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BIOLOGICAL CLOCKS, INFLAMMATION, AND MULTIORGAN DAMAGE IN 

SICKLE CELL DISEASE 
 

 

Morayo G. Adebiyi, B.S. 

 

Advisory Professor: Yang Xia, M.D., Ph.D.  

 

Sickle cell disease (SCD) is a dangerous condition caused by a genetic 

mutation on the human beta-globin gene that contributes to erythrocyte sickling, the 

hallmark of the disease. Chronic intravascular sickling in peripheral organs can 

contribute to systemic inflammation and multiple organ dysfunctions leading to 

further disease progression. Previous metabolomics studies have confirmed that 

elevated sphingosine kinase 1 (SphK1) mediates sphingosine-1-phosphate (S1P) 

production to promote erythrocyte sickling. S1P signals via five S1P receptors 

(S1PR) that regulates several pathophysiological functions. 

In the first chapter of this dissertation, I explored the role of S1PRs in SCD by 

utilizing pharmacologic and genetic tools. To determine the role of S1P-S1PRs 

signaling in SCD, I treated humanized Berkeley sickle mice (Berkeley HbS mice), 

with FTY720, a US Food and Drug Administration (FDA) approved drug. FTY720 

can be phosphorylated by SphK1 thus mimicking S1P to regulate S1PRs signaling. 

Mechanistically, FTY720 can inhibit S1PR signaling in immune cells by the 

internalization of the receptor. Although FTY720 did not improve erythrocyte life 

span or reduce sickling in SCD mice, FTY720 treated SCD mice showed further 

reduction of inflammatory cells in the periphery, reduced mRNA and protein levels of 
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pro-inflammatory cytokine interleukin 6 (IL-6), improved multiple tissue, and renal 

function.  

Since IL-6 is elevated in SCD due to systemic inflammation, I showed that IL-

6 expression in the periphery and local tissues contributes to further upregulation of 

S1PR1 in sickle mice. To test the role of IL-6 in SCD, I generated global genetic 

deletion of IL-6 in sickle mice. Sickle mice with IL-6 deficiency had overall improved 

multiple tissue function, which indicates that IL-6 plays a detrimental role in SCD.  To 

further demonstrate this mechanism, I generated mouse BM-derived macrophages 

to test whether S1P-mediate S1PRs activation, I showed that FTY720 and W146, 

S1PR1 specific antagonists, have immunomodulatory functions that results in the 

reduction of S1PR1 and IL-6 mRNA levels. Moreover, I showed that IL-6 induction 

contributes to further upregulation of S1PR1 mediated via a JAK2-dependent 

manner in macrophages.  

 In the second chapter of this dissertation, I discuss findings generated from a 

highly robust, unbiased microarray screen performed in sickle lung. Several 

upregulated gene pathways were identified in sickle lung, which include iron 

homeostatic genes and inflammatory genes. Unexpectantly, I also discovered 

elevated expression of rhythmic genes, which play a role in regulating biological 

clocks in multiple cell types. Amongst the rhythmic genes detected was Period 2 

(Per2), which regulates circadian rhythms that promotes biological clock function. To 

test whether Per2 mRNA and PER2 protein levels were further induced in sickle 

lung, I utilized a genetic tool, Per2 Luciferase (Per2Luc) mice, a bioluminescence reporter 

mouse model to study PER2 circadian expression. I generated Per2Luc mice with 
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SCD or WT phenotype by bone marrow transplantation (BMT) studies. With this 

genetic tool, I detected PER2 luciferase oscillations in ex-vivo lung explant cultures. 

Upregulation of PER2 (based on luciferase activity) regulated in a circadian manner 

was detected in SCD lungs compared to WT lungs, which confirms that Per2 

contributes to clock function.  

  Next, I determined whether biological clocks play a role in SCD. To test this, I 

generated WT and SCD phenotypic Per1/Per2 deficient mice by BMT studies. 

Per1/Per2 deficient mice have abnormal biological clock function, which plays a role 

in disease.  Interestingly, I observed further multiple organ dysfunction, systemic, 

and local tissue inflammation in SCD →Per1/Per2 dKO mice compared to 

SCD→WT mice, which demonstrates that the loss of Per1/Per2 in SCD is 

detrimental and contributes to these devastating effects.  

 In the third chapter of my dissertation, I explored the impact of chronic 

hemolysis mediating elevated heme and iron induction in sickle mice. Since elevated 

heme and iron are toxic to the organs and contribute to multiple organ dysfunctions, 

I explored whether Per1/Per2 was involved. As expected, I observed heme and iron 

trafficking to the sickle liver and spleen organs is due to hemolysis-mediated events 

due to sickling. Chronic inflammation due systemic release of heme in the periphery 

can contribute to heme and iron overload in peripheral tissues to promote further 

SCD progression. Interestingly, I observed iron trafficking to the Per1/Per2 deficient 

sickle lung. To determine a possible mechanism, I detected heme oxygenase 1 (HO-

1), an enzyme that metabolizes heme, in peripheral macrophages in the lung and 



www.manaraa.com

x 
 

discovered further elevated expression of HO-1 in sickle mice with Per1/Per2 

deficiency.  

 Overall, my work demonstrates the beneficial role of biological clock function 

in sickle mice. My work will be useful for better understanding biological clocks in the 

context of a highly complicated disease. Although there are several molecular 

triggers that can offset biological clocks, my work has further clarified why Per1/Per2 

genes are essential regulators of clock function by promoting protective functions in 

SCD.  
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TLR 6: toll-like receptor 6  

TLR 9: toll-like receptor 9 

TNF-α: tumor necrosis factor alpha 
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WBC: white blood cells 
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I. Introduction  
 

1.1. Etiology of Sickle Cell Disease. 

Sickle cell disease (SCD) is the first cellular, molecular and genetic disease 

characterized in history. In 1910, the first case of SCD was described by Dr. James 

B. Herrick who coined the term “sickle-shaped”, which described the morphology of 

erythrocytes isolated from a patient with pulmonary symptoms (1).  In 1945, Linus 

Pauling was the first to hypothesize that SCD was due to abnormalities in 

hemoglobin (2). To demonstrate this, Pauling performed gel electrophoresis to 

separate hemoglobin in erythrocytes isolated from SCD patients compared to 

healthy patients. There were striking differences in electrophoretic motilities  in sickle 

hemoglobin versus normal hemoglobin (3). Dr. Harvey Itano’s research group 

performed electrophoretic and acid–base titration experiments and concluded that 

there were differences in ionizing properties in the sickle hemoglobin compared to 

normal hemoglobin (3). Further analysis was conducted on sickle hemoglobin that 

confirmed an amino acid substitution from glutamine to valine on the sixth position 

on the β-globin chain (β6 Glutamate →Valine) (4). Thus, the first disease with a 

molecular basis was identified.  Since abnormalities exist in β-globin chain, this was 

linked to the discovery of a nucleotide change of the human beta globin (Hbb) gene, 

which is the cause of this autosomal recessive disease (5).  

1.2. Epidemiology of Sickle Cell Disease. 
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In the US, approximately 100,000 people are living with SCD (7). There are 

approximately 300,000 infants born with SCD worldwide each year (9) with the 

average life expectancy of patients with SCD about 66 years (6). The incidence of 

SCD has significantly increased particularly in sub-Saharan Africa, the islands of the 

Caribbean and the US over the past decades thus leading to high health care costs 

that average more than 488 million dollars in the US alone (6). It is predicted that by 

the year 2050, there will be nearly 10 million SCD patients that will be treated for 

their condition (7). Urgent emergency care is required for the majority of SCD 

patients, which further increases the economic cost. Frequent hospitalizations for 

patients with life threatening complications can lead to high morbidity.  The 

pathological and clinical consequences of SCD include end organ damage, 

priapism, chronic pain, infections, acute chest syndrome, and stroke (6). More than 

half of patients living with severe complications of the disease experience early 

mortality (8).  

1.3. Systemic hemolysis, iron overload, and inflammatory pathways underlying SCD 

progression. 

  Sickle erythrocytes adhesion to the endothelium mediates drastic vascular 

changes, which can contribute to reduced organ function. Systemic hemolysis 

releases circulating hemoglobin, which can scavenge nitric oxide (NO) thus resulting 

in endothelial cell dysfunction (9). NO production is essential for anti-inflammation, 

anti-thrombosis, and vasodilation.  Deficiency in NO production is attributed to the 

abundance of free heme released in the circulation. Elevated heme mediates 

induction of endothelial heme oxygenase 1 (HO-1) to breakdown heme to form iron, 



www.manaraa.com

3 
 

carbon dioxide, and biliverdin (10). Bilirubin is a further metabolized product of 

biliverdin. Elevated bilirubin due to systemic hemolysis can result in deposition to the 

bile ducts in the liver and gallbladder.  

 Intravascular hemolysis can contribute to elevated heme-bound iron released 

from hemoglobin. The heme degradation pathway is involved in the metabolism of 

heme-bound iron mediated by HO-1.  Further induction of HO-1 contributes to the 

generation of the end products that result from heme degradation.  In SCD, elevated 

HO-1 induction mediates heme degradation. Due to chronic hemolysis elevated iron 

deposition to multiple organs can become toxic, which can interfere with organ 

function.  Since SCD is a condition of oxidative stress, reactive oxygen species 

(ROS) are generated, a dangerous outcome of systemic hemolysis. Due to the 

abundance of ROS, excess iron can react with ROS , which has drastic effects in 

overall organ function (11).  

1.4. Sphingosine-1-phosphate (S1P) signaling mediates sickling and further disease 

progression.   

 In a unbiased high throughput metabolomics screen, our lab discovered that 

elevated levels of circulating metabolites adenosine and sphingosine-1-phosphate 

(S1P) in SCD (12). Our lab discovered that elevated circulating adenosine, a purine 

nucleoside, mediates erythrocyte sickling through adenosine ADORA2B receptor 

activation by contributing to 2,3-diphosphoglycerate (2,3-DPG) induction that 

promotes oxygen release in erythrocytes (13).  Due to elevated systemic adenosine 

in SCD, this signaling pathway contributes to further disease progression. In fact, 

elevated adenosine-mediated ADORA2B receptor activation in erythrocytes induces 
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sphingosine kinase 1 (SphK1)-S1P production to contribute to further sickling (14) 

(Illustration 1). 

S1P is a bioactive lipid generated from sphingomyelin, a class of 

lysophospholipids. Sphingomyelin is metabolized to form ceramide and further 

metabolized to generate sphingosine. Sphingosine is phosphorylated by two 

isoforms of sphingosine kinases (SphKs) known as SphK1 and SphK2.  Differences 

in enzymatic activity have been observed in SphKs, such that SphK1 translocate 

from the cytoplasm to the plasma membrane whereas SphK2 translocate to the 

nucleus.  Although the role of intracellular S1P is not fully understood, elevated 

extracellular S1P can activate five S1P receptors (S1PRs). Amongst these S1PR 

subtypes, S1PR1 is ubiquitously expressed in multiple cell types, including immune 

cells.  Since the discovery of S1PRs, pharmacologic advances have been made to 

target S1PRs.  FTY720 is a US Food and Drug Administration (FDA)- approved drug  

for treating multiple sclerosis and was developed to target and inhibit S1PR1 

signaling by internalization of the S1PR1 for its degradation in the proteasome (15).     
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1.5. The role of elevated immune responses contributing to vascular dysfunction in 

SCD. 

Immune cell types, such as neutrophils, macrophages, and lymphocytes, can 

contribute to the release of inflammatory meditators that promote multiple tissue 

injuries and disease progression. Systemic and sustained inflammation contributes 

to further progression of SCD, which affects nearly every organ system of the body. 

Predictors of mortality in SCD patients can be characterized as elevated circulating 

levels of inflammatory molecules, such as interleukin 6 (IL-6), monocyte 

chemoattractant protein (MCP-1), tumor necrosis factor alpha (TNF-α), endothelin-1 

(ET-1) (16, 17). In sickle mice, danger associated molecular patterns (DAMPs)  such 

as high mobility group box 1 (HMGB1) can also be released from immune cells or 

damaged tissues to trigger activation of toll-like receptor 4 (TLR4) signaling 

pathways in SCD (18).  

Since systemic inflammation-mediated by erythrocyte sickling contributes to 

multiple organ dysfunction, organ specific inflammatory mediators can contribute to 

the progression of SCD. For instance, in the lung, a mixture of inflammatory cell 

types can release a milieu of inflammatory mediators that contribute to severe 

pulmonary complications in SCD. Previous studies have shown increased levels of 

lymphocytes and cytotoxic T cells in bronchoalveolar lavage (BAL) fluid isolated from 

sickle mice (19).  In addition to elevated immune cells, increased levels of 

inflammatory mediators released from immune cells including interleukin 5 (IL-5), 

granulocyte colony stimulating factor (GCSF), and C-X-C chemokine motif 1 (CXCl1) 

were observed (20).   
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1.6. Utilizing a unbiased microarray screen to investigate candidate genes that 

contribute to tissue damage in SCD.  

Elevated inflammation and endothelial dysfunction have been well described 

in SCD. Particularly, pulmonary complications are the leading cause of mortality in 

SCD due to vaso-occlusive events that occur in the lung (21). To determine whether 

changes in gene expression patterns underlie pulmonary dysfunction in SCD, I 

performed a unbiased microarray screen in lung samples isolated from SCD and 

control mice. The gene categories with the highest log2 transformation values were 

inflammatory, heme and iron hemostatic genes, and circadian rhythmic genes. 

Several inflammatory-related genes identified in the screen include Ccl5, Ccl9, 

Ccl17, Cxcl2, Cxcl13, Ifi202b, C4b, C4a, Cxcl10, Pf4, Ccr2, Nfe212, Ccr4, Anxa1, 

Ptgs1, Tlr6, and Adam8.  A series of heme and iron metabolic genes upregulated in 

SCD lung were Lpn2, Slc25a37, Steap2/4, Fech, and Ltf. Unexpectantly, I 

discovered upregulated series of circadian rhythmic genes, which were Bhlhe40, 

Nr1d1, Nr1d2, Dbp, Per2, Id1, Id2, and Nampt. Although the reason as to why these 

genes are enhanced in SCD is unknown. I focused my attention on Per2, due to the 

role that Per2 gene expression plays in mediating cellular toxicity and inflammation 

(22-24). Moreover, PER2 is a transcription factor that regulates the transcription of 

genes responsible for anti-oxidative stress in multiple cell types (25). Overall, PER2 

is a major circadian clock gene that regulates biological clocks, which are 

responsible for generating circadian rhythms in multiple organs.  
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1.7. Circadian Period genes from fruit flies to mammals regulate circadian clock 

function. 

Period (Per) gene was initially discovered in drosophila in 1971 by Seymour 

Benzer and Ronald Konopka, which was later characterized as a circadian gene 

essential for locomotor function. Years later, three scientists, Dr. Jeffrey C. Hall, Dr. 

Michael Rosbash, and Dr. Michael W. Young earned the Nobel Prize for their 

pioneering work by identifying the function of Per as a circadian clock oscillator. 

Interestingly, Per mutants were identified to have a shortened or lengthened period 

length, which contributes to complete arrhythmicity in constant darkness (26).  Per 

was identified to oscillate in a circadian manner to regulate a transcriptional-

translational feedback loop (27). Mammalian Per genes were identified and cloned 

to generate mouse strains with genetically altered Per genes. Although there are 

three Per gene homologues that underlie circadian behavior in mice Per1 and Per2 

are the major genes that function independently in mediating circadian activity in 

rodents (28). Particularly, Per2 has been identified to function as a tumor suppressor 

in age-related toxicity, a contributor to heme biosynthesis, and a regulator of wheel-

running locomotive activity in mice (23, 29-31). The function of Per1 has been 

demonstrated to be involved in rodent circadian behavior (32)  and the role of Per3 

has not been fully understood.  

At the transcriptional-translational level, RNA and protein levels of clock-

related genes and proteins are circadian regulated. Circadian genes have specific 

rhythmic expression patterns, which can positively or negatively influence the 

peripheral clocks. Particularly, brain and muscle arnt-like 1 (BMAL) and circadian 
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locomotor output cycles kaput (CLOCK), are the upstream oscillators that bind to 

enhancer box (E-box) regulatory promoter regions (14). Thus, BMAL and CLOCK 

transcriptionally regulate  expression of Per1 and Per2 genes, which encode the 

downstream circadian oscillators. Elevated PER1/PER2 expression can 

transcriptionally repress BMAL/CLOCK expression in a negative feedback manner 

(15). Per expression can be further enhanced due to elevated enhancers binding to 

the E-box promoter regions to promote Per2 transcription (16). Circadian 

homologues, PER1 and PER2, play a vital role in maintaining the mammalian clock 

(25) (Illustration 2). In fact, transcriptional repression of Per2 is detrimental to overall 

clock function. Persistent repression or genetic deletion of Per2 impairs vital organ 

functions and contributes to disease progression (26, 27). 

Moreover, disruptions in circadian rhythms mediating biological clocks can 

contribute to  cardiovascular disease, neurological disorders, cancer, and obesity. In 

addition to Period (Per1 and Per2) genes, other genes that regulate circadian 

rhythms, which includes Cryptochromes (Cry1 and Cry2), Neuronal PAS domain 

protein 2 (Npas2), Nuclear receptor subfamily 1  group D member 1 (Nr1d1) , Brain 

and muscle arnt-like 1 (Bmal) and circadian locomotor output cycles kaput (Clock) 

(33) . All of these clock genes are ubiquitously expressed in the organism and are 

necessary for maintaining circadian rhythms (Illustration 2). Circadian rhythms are 

synchronized globally in the organism; moreover, tissue-specific circadian clocks are 

regulated in response to stimuli such as hormones, glucose, salt, cytokines, and 

chemokines (34). The circadian clock regulates expression of the inflammatory 

response that contributes to the onset of disease (35, 36). Synchronized circadian 
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rhythms persistently regulates peripheral clocks in tissues. Multiple cell types in 

tissue also express circadian genes that oscillate based on the time of day.  In fact, 

PER1 and PER2  play a critical role in hematopoiesis, which takes place in the bone 

marrow  (37). At the cellular level, synchronized rhythms can be observed in the 

erythroid, myeloid, and lymphoid cell lineages (35, 38, 39). However, in erythrocytes 

Per2 is not expressed due to enucleation.  Besides mature erythroid cells, other 

hematopoietic lineage cells with a nuclei can transcribe Per2 DNA, which play a role 

in various cellular processes (29).    

 

 

 

 

 

 

 

 

 

 

 

Illustration 2  

Biochemical Society Transactions 
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Illustration 2: Circadian oscillators regulate rhythmic processes in the cell 

(Biochemical Society Transactions). In the nucleus, BMAL and CLOCK bind to the 

Enhancer box (E-Box) promoter regions to promote transcription of Per1 or 2, Cry 1 

or 2, and Ck1ε. Elevated PER1/PER2 can negatively inhibit BMAL/CLOCK that 

regulate Per1 or 2 transcription. Retinoic acid receptor-related orphan receptors 

(ROR) binding to reverse response elements (RRE) contributes to Bmal 

transcription. However, elevated Rev-erβ can inhibit ROR binding to RRE to inhibit 

Bmal transcription. 

 

1.8. The rationale of this dissertation.   

The purpose of this dissertation is to investigate the detrimental impact of 

chronic hemolysis in SCD that mediates end organ damage. I investigated the role 

of S1P-mediated S1PR1 signaling in organs that contributes to multiple organ 

dysfunction.  Additionally, I performed a robust and unbiased microarray screen to 

determine how multiple organ damage due to elevated heme deposition in SCD 

contributes to changes in gene expression. Unexpectedly, I discovered that 

circadian Per2 gene expression was upregulated in SCD, which indicates that Per2 

gene expression mediate molecular clock function, which has an important role in 

this disease. Extending from the results identified from the unbiased screen, I have 

generated a hypothesis that elevated Per2-mediate biological clock function is 

required for overall organ maintenance in SCD. By generating sophisticated genetic 

tools by bone marrow transplantation studies, I will study the expression patterns of 

Per2 in sickle and control mice by means of a Per2  knock-in bioluminescence 
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reporter mice model to quantify PER2 luciferase activity. Additionally, I will determine 

whether the differentiation of bone marrow derived cell lineages in the periphery is 

altered by global deletion of Period genes in sickle mice.  Overall, I propose that 1) 

elevated Per2 plays a beneficial role in SCD due to essential role in regulating 

biological clocks in vivo. 2) Molecular clock dysfunction due to global Per1-/-/ Per2-/- 

in multiple cell types is detrimental and promotes tissue dysfunction in SCD. 3) 

Mixture of cell types that are Per1-/-/ Per2-/- in organs or Per1+/+/Per2+/+ progenitor 

cells from bone marrow can co-induce heme oxygenase 1 (HO-1) activity to regulate 

heme degradation, which play a protective role in the organ.  
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II. Methods 
 

2.1. Mice generation (Berkeley Human Sickle Cell, SCD-IL-6-/-, Per1/ Per2 dKO, 

Per2Luciferase mice). 

Animals were housed in 12 hour light/12 hour dark (12 L: 12 D) conditions 

and had access to food and water ad libitum. All animal procedures presented 

herein were approved by the Animal Welfare Committee at the University of Texas 

Health Science Center. IL-6-/- (IL-6 dKO) mice were used for mating whereas 

Per2Luciferase (Per2Luc) and Per1-/-/Per2-/- (Per1/Per2 dKO) mice were used as bone 

marrow (BM) recipients. WT,IL-6-/- , and SCD Berkeley mice were purchased from 

Jackson laboratory. SCD heterozygous (SCD Tg/+) females mated with SCD Tg/+ 

males. Progeny were genotyped to confirm the presence or absence of mutant 

sickle beta-globin (HbS) gene. About 25% of progeny is predicted to have mutant 

gene. SCD- IL-6-/- mice were generated by mating heterozygous SCD female mice 

with IL-6-/- male mice. Progeny were genotyped and confirmed to be heterozygous 

for three genes: hemoglobin alpha (HBα), hemoglobin beta (HBβ), and IL-6. 

Heterozygous Hbα -/+/ Hbβ -/+/ IL6-/+ females were mated with IL-6 dKO males 

(Hbα+/+/ Hbβ +/+/IL-6-/-). Progeny genotype as Hbα -/+/ Hbβ -/-/ IL-6-/-, were confirmed 

and recognized as SCD-IL-6-/- mice.  

Tails were collected for genomic DNA extraction. Primer sequences for HBB 

tm1TOW (Sickle cell) sequences were designed as followed (Table1) (40). 

Thermocycler conditions were set for 40 cyclers at 94 degrees for 5 minutes, 84 

degrees for 10 minutes, 94 degrees for 1 minute, 60 degrees for 30 seconds, and 72 
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degrees for 2 minutes. Followed by 72 degrees for 5 minutes and a final hold 

temperature at 4 degrees. Mutant and WT DNA fragments were analyzed by gel 

electrophoresis. Mutant DNA length (398 base pairs) and WT DNA length (291 base 

pairs). IL-6 primer sequences were designed as follow (Table 1) (41). Thermocycler 

program was set for 30 cycles for the following 94 degrees at 5 minutes, 84 degrees 

at 10 minutes, 94 degrees at 1 minute, 60 degrees for 30 seconds, and 72 degrees 

at 2 minutes. Then 72 degrees for 5 minutes and final holding temperature at 4 

degrees.  Gel electrophoresis was performed to detect WT (174 base pairs) and 

Mutant (380 base pairs) DNA fragments. 

Per1/Per2 dKO mice were a gift provided by Dr. Cheng Chi Lee and were 

maintained by mating Per1/Per2 dKO males and females. Progeny were genotyped 

to confirm mutated Per1 and Per2 gene expression. Mating strategy, homozygous 

Per1/Per2 dKO males crossed with homozygous Per1/Per2 dKO females.  Primer 

sequences for Per1 WT, Per1 null DNA,  Per2 WT, and Per2 null DNA were 

designed as followed (Table 1) (30). PCR conditions were set for 30 cycles of: 95 

degrees for 1 minute, 94 degrees for 38 seconds, and 63 degrees for 38 seconds. 

Then 72 degrees for 45 seconds and then 3 minutes, and a final hold at 4 degrees. 

Gel electrophoresis was performed to confirm WT Per1 DNA length is 440-448 base 

pairs and Null Per 1 DNA length is 280-320 base pairs. Primer sequences for Per2 

WT and Per2 Null DNA were designed as followed (Table 1) (30). PCR thermocycler 

conditions were set at to repeat for 30 cycles at 95 degrees for 1 minute, 94 degrees 

for 50 seconds, and 62 degrees for 50 seconds.  Followed by 72 degrees for 50 

seconds, 72 degrees for 3 minutes, and final hold temperature at 4 degrees. Gel 
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electrophoresis was performed to validate Per2 WT DNA (240-280 base pairs) and 

Per2 null DNA (600-640 base pairs).  

 
Per2Luicferase mice were provided by Dr. Seung-Hee Yoo. Heterozygous 

Per2Luciferase males mated with heterozygous females. Three primers sequences P1, 

P2, and P3 were designed to detect progeny genotype: WT (Per2 +/+), heterozygous 

(Per2 Luc/+), and mutant mice (Per2 Luc/Luc). WT allele (P1) or deleted allele (P2) 

detection using primer sequences (Table 1) (42). Reverse primer sequences for 

detecting luciferase knock-in allele (P3) (42). Tails were collected and processed for 

genomic DNA extraction. PCR thermocycler conditions were run at 95 degrees for 1 

minute, 55 degrees for 1 minute, and 72 degrees for 1 minute that repeated for 35 

cycles. Gel electrophoresis analysis was carried out to confirm DNA base pair sizes. 

Heterozygous and homozygous (Per2Luc/+ and Per2 Luc/Luc) mice were maintained 

and used as BM recipients.  WT DNA length was 230 base pairs and mutant DNA 

length 680 base pairs. Heterozygous mice express both WT and mutant DNA.   
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Table 1:  Genetic sequences for HBB tm1TOW (Humanized sickle cell mice), global 

deficient  IL-6 dKO, Per1/Per2 dKO (corresponding to gene sequences for null Per1, 

WT Per1, WT Per2, Per2gtnlf2, and Per2Neo4), and Per2Luciferase bioluminescence 

reporter mice (gene sequences were designed for detecting Per2Luciferase : P1, P2, 

and P3. Gene sequences were confirmed by Jackson Laboratory.    

 

2.2. Pharmacologic treatments in sickle mice.  

Sickle Cell Berkeley mice were treated with Fingolimod (FTY720) supplied by 

Cayman Chemical Company at a dose of 1 mg/Kg of body weight and injected 

intraperitoneally (IP) for up to 8 weeks. Drug was prepared in PBS (Invitrogen) used 

as a vehicle.  

 2.3. Hematological assessment in sickle mice. 

Mice were treated with isoflurane supplemented with oxygen as means of 

anesthesia during blood collection. Peripheral blood isolated from tail vein was 

collected in EDTA tubes in order to prevent coagulation. A hemolyzer (IDEXX 

technologies) was used to detect multiple hematological parameters that pertain to 

erythrocytes and immunological cells. For sickling assessment, a few drops of blood 

were smeared on microscope glass slides with positive charges coated on the glass, 

which improves cell adhesion on the slide. After blood dried on the slide, slides were 

stained with Wright-Giemsa solution, which stain erythrocytes pink. Sickle cells were 

captured on a 20X objective using a Zeiss light microscope.       

2.4. Erythrocyte lifespan measurements. 
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Biotinylated-labeled erythrocytes were generated in vivo to determine 

erythrocyte life span in SCD mice.  N-hydroxysuccinimide (50 mg/Kg) was injected 

into the retro-orbital plexus in mice. Next, peripheral blood (5 uL) was collected from 

mouse tail vein on day 1, 2, 3, 5, and 8 for flow cytometric detection of biotinylated-

labeled erythrocytes by expression of streptavidin conjugated fluorochrome and 

Ter119 (12, 43).  

2.5. Flow cytometric analysis of immune cells isolated from peripheral tissues. 

Whole tissues were isolated from euthanized mice. Tissues were harvested in 

culture dishes containing Hank’s media and were manually processed with sterilized 

surgical tools to generate single cell suspensions. Suspensions were transferred to a 

clean conical tube containing a 40-µm strainer in order to filter out unprocessed 

tissue clumps. Single cells were treated with Fc blocking antibody (BD Biosciences) 

per million cells for 30 minutes at 4 degrees centigrade as previously described (43). 

Afterwards, cells were stained with fluorophore-conjugated antibodies to detect 

S1PR1 and F4/80 as previously described (43).  Single cell fluorescent expression 

was detected using a Gallios Flow Cytometer (Beckman Coulter) and analysis was 

performed using Kaluza software (Beckman Coulter).  

2.6. Whole blood detection of circulating inflammatory cytokines by ELISA method. 

Whole blood was drawn from anesthetized mice by cardiac puncture and 

collected in anti-coagulant EDTA tubes. Blood was centrifuged to collect plasma as 

previously described (43). Multiple analyte ELISA array was performed to detect 

interleukin (IL): IL- 2, 6, 12, and 17A (MEM-004A; Qiagen).   
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2.7. IL-6 detection in serum, multiple organs, and bronchoalveolar lavage (BAL) 

fluid.  

              Mice were anesthetized and blood was collected by cardiac puncture, blood 

was centrifuged, serum was flash frozen, and stored at-80 degrees centigrade for 

future usage.  Skin and muscle was removed to expose the trachea. A small hole 

was cut in the trachea and a gauge needle was inserted.  1% BSA-PBS was injected 

into the trachea to collect bronchoalveolar lavage (BAL) fluid.  BAL fluid was flash 

frozen and stored until further usage.  Afterwards, whole spleen, lung, kidney, and 

liver were removed from euthanized mice and were properly preserved.  Murine IL-6 

detection in BAL, blood plasma, and multiple tissues was performed by ELISA assay 

based on manufacturer’s instructions (EZMIL-6, MilliporeSigma).  

2.8. Bone marrow derived macrophages generation from mouse. 

Mice were IP injected with 2.5% Avertin and euthanized by cervical 

dislocation. Skin and muscle was removed with sterilized scissors and forceps. 

Femur and tibia were removed from both hind legs and placed in Hank’s solution for 

further dissection. Excess tissue was removed from the bone and bone was clipped 

at both ends. Marrow found inside the bone was flushed out in a clean culture dish 

containing DMEM that is supplemented with FBS, L929, glutamine, and PenStrep. 

Cells were separated with clean pipet tip to prevent coagulation. Cells were collected 

from the dish and centrifuged. Then, the cell pellet was collected and resuspended 

in fresh media. Cells were counted and added to individual petri dishes with 

additional culture media for 4 days in a 37 degrees centigrade incubator.  Additional 

medium was added to cells in the petri dishes on day 4 and remained in culture 
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conditions for up to 4 additional days. Culture media was discarded on day 8 and 

fresh medium was added to petri dish. Cell confluence was determined at 80 to 

90%.  

2.9. Pharmacologic treatment in macrophage culture for S1P, W146, JTE013, 

TY52156, CYM50358, and AG490. 

Mouse BM derived macrophages were prepared as previously described (43). 

Macrophage cultures were treated with 1uM of S1P prepared in vehicle and S1PRs 

antagonists for S1PR1, S1PR2, S1PR3, S1PR4, refer to as W146, JTE013, 

TY52156, CYM50358, respectfully. Additionally, antagonist for JAK2 is refer to as 

AG490.   

2.10. Whole lung RNA isolation for gene expression screening. 

SCD and WT control mice were euthanized by cervical dislocation and whole 

lung was removed. Lung tissues were completely homogenized in TRIzol 

(Thermofisher) reagent and kept on ice. Chloroform was added to homogenized 

samples and centrifuged to create phase separation. RNA was treated with DNase 

for 30 minutes in order to prevent degradation. RNA was precipitated with 

isopropanol and RNA samples were transferred to mini columns from RNeasy micro 

kit (Qiagen) for RNA purification. RNA quality checks were accessed using nanodrop 

(ThermoFisher) and bioanalyzer (Aligent 2100 technologies). RNA quality control 

(QC) were based on 260/280 ratio of ≥ 2 and RNA integrity number (RIN) of ≥8. 

Samples passing all QC requirements were used for microarray analysis. Lung RNA 

samples were reverse transcribed (RT) to generate cDNA and newly synthesized 
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cDNA were fluorescently tagged. DNA was hybridized to GeneChip Mouse Exon 1.0 

ST (Affymetrix). Data was imported to GeneChip software in order to calculate 

intensity values based on fluorescence detection. Data files were imported to 

Affymetrix expression console software to detect probe fluorescence ratios used to 

confirm quality of library preparation. Intensity values were log2 transformed and 

data was imported to software for further statistical analysis. Statistical significance 

was based on P values of P<0.05 and fold changes of differentially expressed genes 

were determined in SCD versus WT group.  

2.11. Irradiation and bone marrow (BM) transplantation. 

WT and SCD humanized Berkley (SCD Tg) mice were used as BM donors. All 

donors were at least 9 weeks of age prior to BM transplantation (BMT).  Recipients 

with confirmed genotypes were treated with 0.2 % Neomycin for at least 24 hours 

prior to irradiation and were maintained on Neomycin treatment for up to 2 weeks 

after irradiation. Recipients were treated with 2 rounds of toxic 2Gy (500 RAD) 

irradiation that took place 3 hours apart. Irradiated mice were injected retro-orbitally 

with SCD or WT BM (1 X10 6 million) cells.  At 8 weeks post BMT, 50 uL of whole 

blood from tail vein was collected in EGTA tubes. Blood cells were lysed using 

ammonium chloride (NH4Cl) and washed with phosphate buffered saline (PBS) 

supplemented with fetal bovine serum (FBS). Cells were stained with leukocyte 

markers to detect CD45.1- phycoerythrin (PE) and CD45.2- fluorescein 

isothiocyanate (FITC) expression by flow cytometric analysis. To confirm BM 

chimeras, SCD transplanted mice typically express high expression of CD45.1 
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whereas WT control transplant mice groups would express elevated expression of 

CD45.2 on leukocytes populations.  

2.12. PER2 luciferase detection in bioluminescence reporter mice. 

Whole lung was isolated from euthanized mice. Lung biopsies were placed on 

MilliCell membrane inserts then placed inside a culture dish. Biopsies were cultured 

in DMEM medium that was supplemented with 10 mM HEPES, 

penicillin/streptomycin (PenStrep), 2% B27, and 0.1 mM of Luciferin. Cultures were 

tightly sealed with vacuum grease and secured with a coverslip, then placed inside a 

tightly fasted- light protected 36 degrees incubator for up to 4 days. Tissue 

sustaining bioluminescence was continuously monitored by LumiCycle 32 

(ActiMetrics) photomultiplier tubes for detecting photon counts. Analysis was 

performed using LumiCycle software (Actimetrics). 

2.13. Hematoxylin and eosin (H&E) staining of multiple tissues. 

Mice were anesthetized using 2.5% Avertin. Whole blood was collected by 

means of cardiac puncture. Cardiac profusion was performed in mice to remove 

excess blood in the circulation. Whole lung, liver, and spleen were removed from 

mice and placed in 10% formalin. Organs were processed in a series of ethanol 

washes that increased to 100% ethanol then placed in histoclear, a wax removing 

agent.  Organs were fastened to a plastic mold for the paraffin wax embedding 

process. Paraffin embedded organs were allowed to cool over night at room 

temperature.  Tissues were sectioned at 4 microns using a Leticia microtome. 

Tissue sections were deparaffinized in histoclear followed by a decreasing series of 
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ethanol solutions. Sections were stained in hematoxylin solution to stain cell nuclei 

that was followed by eosin solution to stain the cytoplasm and fibers in tissue. 

Sections were placed in differentiation solution to increase stain quality. Tissue 

sections were mounted using Cytoseal, a mounting agent, and coverslips were 

placed to secure the sections. Images were acquired using an Olympus BX60 

microscope at a 20X objective. 10 to 15 images were taken for each slide to 

examine tissue structure, necrotic areas, and inflammatory infiltrate. Images were 

analyzed using Photoshop and semi-quantification was performed using Image J to 

examine area density of inflammatory and necrotic regions of the tissues.  

2.14. Perl’s Blue Prussian iron staining of multiple tissues. 

Tissue sections of the lung, liver, and spleen were deparaffinized as 

previously described in section 2.9. Sections were placed in equal part of 

hydrochloric acid (HCL) and potassium ferrocyanide K4Fe(CN)6 solution. Tissues 

were rinsed in distilled water and placed in nuclear fast red solution then rinsed in 

water. Tissue iron expression was identified by enhanced blue color and cell nuclei 

stain as pink. 

 2.15. Proteinuria detection. 

 Mice were individually placed in metabolic cages (Tecniplast 3600M021) for 

24 hours and had access to food and water ad libitum. Urine was collected and 

briefly centrifuged to remove feces, food, and other contaminates. Urine samples 

and standards were placed in a microplate followed by addition of picrate working 

solutions prepared using 1 M NaOH and Picrate Reagent. Microplate was placed in 
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a plate reader and absorbance was detected at 500nm.  Collected urine and 

standards were placed in microplate for albumin (Exocell) measurements. Mouse 

anti- mouse albumin was added to samples and incubated at room temperature. 

Urine albumin levels were confirmed by chemiluminescent detection using anti-rabbit 

–horse radish peroxidase (HRP). Color intensity was measured 

spectrophotometrically. Normalizations were performed by albumin per mg of 

creatinine.  

 2.16. Hemolytic analysis for total bilirubin.  

Whole blood was collected by means of cardiac puncture from anesthetized 

mice.  Blood was spun down at 2500 RPM for 5 minutes. Blood plasma was 

collected, buffy coat was discarded, and erythrocytes were stored. Plasma was 

placed in microplate along with working reagents. Spectrophotometric 

measurements were detected at 530 nm. Total bilirubin detection was calculated 

based on manufacturer’s instruction (BioAssay). 

 2.17. Alanine aminotransferase (ALT) detection.  

Whole blood was collected and plasma was isolated as previously described 

in section 2.12. ALT enzyme activity was measured by generation of pyruvate that 

was assessed by colometric/ fluorometric analysis. Quantifications were performed 

based on manufacturer’s instructions (Sigma Aldrich).    

  2.18. Neutrophil infiltration in lung tissue. 

Lung sections were deparaffinized in a series of ethanol washes and 

rehydrated as previously described in section 2.9.  Tissue sections were heated in 
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citrate acid antibody retrieval solution for 30 minutes and were allowed to cool to 

room temperature. Lung tissue sections were incubated in 3% hydrogen peroxide 

solution to block endogenous peroxidase activity. Tissue sections were then blocked 

in 2% BSA-PBS solution for 1 hour and were incubated with primary anti-mouse 

Ly6-G 1:200 diluted (BD Biosciences) antibody overnight at 4 degrees, washed, and 

incubated in biotinylated anti-mouse antibody. Development was performed using 

DAB peroxidase substrate solution (Vectastain), counterstained, washed, and 

mounted. Images were acquired on 20X objective on an Olympus microscope.  

2.19. RNA extraction and semiquantitative polymerase chain reaction (PCR) 

detection of inflammatory genes in lung. 

Whole lung tissues were isolated from euthanized mice. Lung were 

homogenized in TRIzol (thermofisher) solution, DNase treated to prevent RNA 

degradation, and precipitated in isopropanol. RNA were purified using RNeasy micro 

kit (Qiagan) based on manufacturers’ instruction.  Quality checks of RNA samples 

were confirmed by nanodrop (Thermofisher). Absorbance 260/280 ratio of ≥ 2 

passed quality check for RNA quality. 1 µg of RNA were revere transcribed to 

generate cDNA. Primers for semiquantitative PCR were design using (Integrative 

DNA technologies) software. Sybr Green (Qiagan) probe were used for gene 

expression detection for mouse Bmal and Per2 (44). Mouse IL-6 (45), mouse Tlr4 

(46), and mouse β-actin were also detected by RT-PCR. PCR thermocycler 

conditions were set at 95 degrees for 1 minute, 60 degrees for 30 seconds, and 72 

degrees for 15 seconds.  Gel electrophoresis were performed to detect DNA 

fragments for each gene.  
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Table 2 

 

Gene Forward Reverse 
Mouse Bmal  
 

5’- 
CCAAGAAAGTATGGACAC
AGACAAA -3’ 

5’- 
GCATTCTTGATCCTTCCTTG
GT -3’ 

Mouse Per1  5’- 
CCCAGCTTTACCTGCAGA
AG-3’ 

 5’- 
ATGGTCGAAAGGAAGCCTC
T -3’ 

Mouse Per2 5’- 
TGTGCGATGATGATTCGT
GA-3’ 

5’- 
GGTGAAGGTACGTTTGGTT
TGC-3’ 

Mouse IL-6  5’-
TAGTCCTTCCTACCCCAAT
TTCC-3’ 

 5’-
TTGGTCCTTAGCCACTCCTT
C-3’ 

Mouse Tlr4  5’-
TGGCTGGTTTACACATCC
ATCGGT-3’ 

5’-TGG 
CACCATTGAAGCTGAGGTC
TA-3’ 

Mouse β-actin  5’- 
CCAGAAGGACTGTTATGT
GGGA-3’ 

5’- 
GACTCCGTGTTCAATGGGA
TAC-3’ 

 

 

Table 2: List of genes for Bmal, Per1, Per2, IL-6, Tlr4, and β-actin in mouse. Primer 

sequences were designed as previously described (44, 46). 

 

2.20. Immunofluorescence detection of heme oxygenase (HO-1) expression in 

alveolar macrophages. 

Whole lung sections were processed for deparaffinization and rehydration 

followed by antibody retrieval treatment as previously described in sections 2.9 and 

2.14. Tissue sections were blocked in 2% BSA-PBS followed by overnight incubation 
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of diluted antibodies mouse anti- rabbit HO-1 (1:200) (Cell signaling) and mouse 

anti-rat F4/80 (1:200) (Abcam). Sections were washed several times followed by 

incubation of diluted (1:1000) goat anti-rabbit IgG and donkey anti-rat IgG (H+L) 

(Thermofisher). Lung sections were washed to remove excess antibodies and 

mounted with DAPI SlowFade Gold Antifade reagent (Thermofisher). Clear color nail 

polish were placed around the perimeter of the section slide to secure coverslip on 

slide.  

 

2.21. Statistical analysis. 

Analyses were performed using Graph Pad software (LaJolla, California).  

Student t tests for 2 group analyses or one-way ANOVA followed by Tukey multi-

comparison tests were performed for multiple group analyses.  *P<0.05 were 

considered significant. 
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III. Results 
 

 3.1. Chapter 1: Chronic inflammation and multiple tissue 

damage is detrimental in SCD 

 

This chapter is based upon: Zhao S, Adebiyi MG, Zhang Y, Couturier JP, Fan X, 

Zhang H, Kellems RE, Lewis DE, and Xia Y. Sphingosine-1-phosphate receptor 1 

mediates elevated IL-6 signaling to promote chronic inflammation and multitissue 

damage in sickle cell disease. FASEB J. 32,000–000(2018)(43), with permission 

from the FASEB journal for the usage in this dissertation.  

 

Unbiased metabolomics analysis revealed an increase of sphingosine-1-

phosphate (S1P), a highly reactive bio-lipid, in the blood circulation of SCD mice and 

patients (12). Extracellular S1P signals via five G-protein coupled receptors 

(GPCRs) known as S1P receptors (S1PRs). S1P-S1PRs signaling has been 

identified to contribute to disease-related conditions, including vasculature leakage, 

tissue injury, and pain (47-49). Amongst the five S1PRs, S1PR1 is ubiquitously 

expressed in multiple cell types and organs and has a high affinity for S1P (50, 51). 

Although sphingosine kinase 1(SphK1) –mediated S1P production is independent of 

sickling (12), the question remains whether S1P-mediated S1PR1 activation 

contributes to sickling and further SCD progression.  
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3.1.1. FY720-mediated S1PR1 antagonism has no effect on erythrocyte sickling.  

FTY720 is a FDA-approved drug to treat relapsing multiple sclerosis known to 

have potent anti-inflammatory effects in experimental animal models (15). 

Sphingosine kinases phosphorylate FTY720 in vivo, which mimics the chemical 

structure of S1P. Thus FTY720 can target S1PRs to either promote recycling of the 

receptor to membrane or receptor degradation (52). S1PR1 is ubiquitously 

expressed in multiple cell types including endothelial and immune cells, which 

contributes to inflammatory responses such as cytokine secretion mediated by 

inflammatory cell infiltration to multiple organs that promote disease (53).   

Sickle erythrocytes have a much higher turnover than normal erythrocytes.  I 

tested whether FTY720 improves erythrocyte life span in sickle mice. To test this, I 

treated SCD mice with FTY720 (1 mg/Kg/day in vehicle, intraperitoneal injection) or 

saline-vehicle injection for a duration of 8 weeks. I collected peripheral blood by tail 

vein extraction from treated mice groups. I used flow cytometry to detect fluorescent 

streptavidin used to identify biotinylated-labeled erythrocytes generated in vivo by 

means of injecting N-hydroxysuccinimide (50 mg/Kg) in treated SCD mice.  

Erythrocytes were isolated from the treated mice on day 1, 2, 3, 5, and 8, which 

followed N-hydroxysuccidnimide injection to monitor erythrocyte life span.  No 

differences were observed in erythrocyte life span in FTY720 treated mice compared 

to control (Figure 1) (43).  
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Figure 1. FTY720 does not affect erythrocyte life span in SCD mice.  Mice were 

injected with N-hydroxysuccinimide (50 mg/Kg) to monitor erythrocyte life span. 

Whole blood was extracted from tail vein on 1, 2, 3, 5, and 8 days to detect 

biotinylated erythrocytes in sickle mice treated with FTY720 or saline.  Analysis 

revealed that FTY720 or saline treatment has no direct effect on erythrocyte life 

span in sickle mice; N=6-7 mice per group. 

Since I observed no differences in erythrocyte life span in FTY720 treated 

SCD mice, I examined other hematological parameters such as erythrocyte count 

(RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), and 

red cell distribution width (RDW), in the treated groups. Based on the complete 

blood cell (CBC) analysis, sickle mice express RBC levels of ~4 to 6 M/µL, HGB 

levels of 6 to 8 g/dL, HCT levels of 18 to 27%, MCV levels of 40 to 50 fl, and RDW 
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levels of ~30 %. By contrast, WT mice typically express RBC levels of ~9 M/µL, HGB 

levels of ~13 (g/dl), HCT levels of 40 to 45 % and MCV levels of ~50 fl.  In the 

FTY720 treated SCD mice, there were no differences in RBC, HGB, HCT, MCV, or 

RDW compared to saline-treated SCD mice (Table 3) (43). I determined the 

morphology of erythrocytes in sickle mice to confirm the percentage of sickling in 

these mice. The analysis revealed that there were no differences in sickling in 

FTY720 treated mice compared to saline treated mice (Table 3) (43).  Altogether, I 

conclude that FTY720 does not significantly impact erythrocyte life span or reduce 

erythrocyte sickling in SCD mice. 

 

Table 3 

 

Table 3: SCD Tg: sickle cell disease transgenic mice; RBC: red blood cell count; HB: 

hemoglobin; HCT: hematocrit; MCV: mean corpuscular volume; RDW: red blood cell 

distribution width; WBC: white blood cells; LY: lymphocyte; NE: neutrophil; MO: 

monocyte; EO: Eosinophil; BA: basophils. * P<0.05 vs. SCD Tg mice without 

treatment. 
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3.1.2. Sphingosine-1-phosphate receptor 1 (S1PR1) mediates elevated inflammation 

in SCD. 

Although I detected no significant differences in erythrocyte sickling in SCD 

mice treated with FTY720, I discovered that circulating immune cells in FTY720-

treated mice were significantly reduced compared to saline-treated mice. The CBC 

analysis revealed that the total white blood cells (WBCs) that include lymphocytes 

(LYs), neutrophils (NEs), monocytes (MOs), eosinophils (EOs), and basophils (BAs) 

were reduced in FTY720 treated mice. Sickle mice express elevated levels of WBC 

~27 k/µL,  LY ~ 20 k/µL, NE ~4 k/µL , MO k/µL ,~0.09  EO k/µL, and  BA ~0.04 k/µL 

(Table 3) (43) .  However, FTY720 treated SCD mice express reduced levels of 

WBC ~ 8 k/µL, LY ~5 k/µL, NE ~2 k/µL, MO ~0.60 k/µL, EO ~0.12 k/µL, and BA 

~0.01 k/µL (Table 3) (43).   

 

 Since I revealed that the mechanism of action of FY720 in SCD functions in 

an immunomodulation capacity, I hypothesized that elevated S1PR1-mediates 

cytokine secretion from immune cells to contribute to systemic immune response 

and further SCD progression. To test this, I detected interleukin (IL)-2, -6, -12, and -

17A levels in peripheral blood by ELISA. Although multiple cytokines were increased 

in SCD mice compared to WT mice, IL-6 was induced to the greatest extent 

compared to the other cytokines (Figure 2) (43). Additionally, I revealed that all of 

the cytokines were reduced by FTY720 treatment in SCD mice (Figure 2) (43).  
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Figure 2. FTY720-treated SCD mice reduced circulating inflammatory 

cytokines demonstrated by ELISA assay. Values expressed as ± SEM, *P<0.05, 

SCD mice treated with FTY720 compared to SCD mice treated with saline. **P< 

0.01, SCD mice treated with FTY720 compared to SCD mice treated with saline. N= 

6-9 mice per treatment group.  

 

Further induction of circulating IL-6 in periphery was identified in SCD mice 

and reduction of IL-6 was observed in SCD-FTY720 treated mice. Next, I determined 

whether IL-6 in peripheral tissue levels correlated with plasma levels of IL-6.  To test 
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this, I isolated spleen, liver, lung, and kidney from FTY720 or saline treated WT and 

SCD mice to determine IL-6 protein levels. In comparison to elevated circulating IL-6 

levels in SCD mice, FTY720-treated mice showed a reduction of IL-6 expression in 

the periphery (Figure 3A). Additionally, IL-6 expression in multiple organs was  

elevated in SCD mice and reduced by FTY720 (Figure 3B). Taken together, I 

revealed that elevated FTY720 functions as an immune suppressor to reduce 

systemic and local inflammatory response in SCD.  

 

 

 

 

 

 

 

 

Figure 3. Circulating IL-6 and IL-6 protein levels in spleen, liver, lung, and 

kidney detected by spectrophotometric analysis. (A&B) Significant reduction of 

peripheral IL-6 and tissue IL-6 levels in mice treated with FTY720. *P < 0.01, WT 

mice treated with FTY720 compared to WT mice treated with saline or SCD mice 

treated saline compared to WT mice treated with saline, respectfully. **P < 0.05, 

SCD mice treated with saline compared to WT mice treated with saline or SCD mice 



www.manaraa.com

35 
 

treated with FTY720 compared to SCD mice treated with saline. #P<0.001, SCD 

mice treated with FTY720 compared to SCD mice treated with saline; N=6-9 mice 

per group.  

 

 

3.1.3. Elevated interleukin 6 (IL-6) contributes to chronic inflammation and tissue 

damage in SCD. 

Interleukin 6 (IL-6) is a pro-inflammatory cytokine elevated in SCD (54). To 

determine whether elevated IL-6-mediate an inflammatory responses in SCD, I 

generated SCD mice with a global deficiency of IL-6 (SCD-IL6-/- as described in 

Methods Section of this dissertation. I analyzed CBC to examine hematological 

parameters. In SCD-IL-6-/-  mice, RBC counts ~6 M/µL, HGB ~6 g/dl, HCT ~20%, 

MCV ~48, and RDW ~34% (Table 3) (43). I detected erythrocyte sickling in SCD-IL6-

/-  and confirmed that there was no differences in sickling as previously observed 

(Table 3) (43).   

However,  I observed that SCD-IL6-/-  reduction of  WBCs ~ 15 k/µL, LYs ~ 11 

k/µL, NEs ~2 k/µL, MOs 1 k/µL ,~0.09  EOs k/µL, and  BAs ~0.04 k/µL (Table 3) 

(43).  This implies that genetic deletion of IL-6 in sickle mice reduces the immune 

response. To further confirm IL-6 global deletion in SCD mice, I detected circulating 

IL-6 levels and confirmed total elimination of IL-6 in SCD-IL6-/- (Figure 4) (43).  
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Figure 4.  Global genetic deletion of IL-6 in SCD mice abolished IL-6 levels in 

the circulation. Although SCD transgenetic mice showed increase plasma IL-6 

levels compared to WT mice. Sickle mice with global genetic deletion of IL-6 was 

generated and IL-6 plasma levels were not detectable in these mice.  Values shown 

represent the mean ± SEM.*P<0.01, SCD mice compared to WT mice. ND means 

not detected.  

 

Next, I determined whether elevated IL-6 contribute to tissue damage in SCD. 

Since systemic inflammation is evident in SCD mice and FTY720 mediates anti-

inflammatory effects, I hypothesized that FTY720-mediate IL-6 contributes to tissue 

damage in SCD.  To test this, I performed histological assessments in lungs, livers, 

spleens, and kidneys. I further quantified the areas of interests that indicate severe 

tissue damage in WT and SCD untreated mice, SCD mice treated with FTY70 or 
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saline, and SCD-IL-6-/- mice. Elevated inflammatory infiltrates in the lungs and 

necrotic areas in the spleens, livers, and kidneys was identified in SCD mice 

compared to WT mice (Figure 5 A-D) (43). Moreover, FTY720-treated SCD and 

SCD-IL-6-/- mice showed overall improved tissue structure and decreased 

inflammatory cell congestion in the lungs (Figure 5A-D) (43).  Reduced necrotic 

regions in spleens, kidneys, and livers was also observed in FTY720 treated SCD 

mice and SCD-IL-6-/- mice (Figure 5A-D) (43).  

Sickle mice and patients have severe kidney dysfunction due to abnormal 

glomerular filtration rates and elevated protein concentrations in the urine (10). I next 

examined kidney function in the pharmacologic treated SCD mice and SCD mice 

with IL-6 global deficiency  by detecting albumin normalized to creatinine levels in 

urine isolated from these mice. I first confirmed an increase of albumin in SCD saline 

treated mice and SCD untreated mice (Figure 5F) (43).  In comparison to the 

untreated and control treated SCD mice, I found that kidney function was improved 

FTY720 treated SCD mice and SCD-IL-6-/-  mice (Figure 5F) (43). 
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Figure 5.  FTY70 treatment or global genetic deletion of IL-6 contributed to 

overall improved multiple tissue dysfunction in SCD mice. (A) Histological 

assessments in untreated WT, untreated and treated SCD mice, and SCD-IL-6-/- 

mice. (B-E) Semiquantification of histological areas of interests in lung, spleen, liver, 

and kidney isolated from the multiple groups. (F) Quantification of kidney dysfunction 

in WT, SCD, and SCD-IL-6-/-  mice. *P<0.01, saline treated SCD mice compared to 

saline treated WT mice. **P<0.05, FTY720 treated SCD mice compared to saline 

treated SCD mice or untreated SCD mice compared to SCD-IL-6-/- mice.  

 

3.1.4. FTY720 mediates the reduction of S1PR1 in tissue macrophage. 

Since S1PR1 is expressed in various immune cell types and elevated S1P-

S1PR1 signaling contributes to chronic disease, I asked whether S1PR1 signaling in 

macrophages mediate tissue damage in SCD. To test this, I isolated tissue 

macrophages from kidney and spleen in FTY720 treated mice compared to saline-

treated mice. Next, I performed flow cytometric analysis to detect S1PR1 in tissue 

macrophages isolated from WT and SCD mice. At first, I observed that sickle mice 

express more S1PR1 on macrophages compared to WT mice (Figure 6A & B) (43). 

All peripheral macrophages express S1PR1, therefore, I detected S1PR1 expression 

in macrophages isolated from FTY720 treated SCD mice compared to FTY720 

treated WT mice. Taken together, I confirmed a further reduction of macrophages 

expressing S1PR1  in SCD treated mice (Figure 6A &B) (43).   
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Figure 6. FTY720 mediates reduction of S1PR1 in SCD peripheral 

macrophages. (A &B) Flow cytometric analysis of F4/80 + cells (macrophage 

marker) in spleen and kidney isolated from WT and SCD mice treated with FTY720 

or saline. *P<0.01, WT mice treated with saline versus WT mice treated with 

FTY720; *P<0.05, SCD mice treated with saline versus WT mice treated with saline. 

# P<0.001, SCD mice treated with FTY720 versus SCD mice treated with saline.  
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3.1.5. Elevated IL-6 contributes to induction of S1PR1 in SCD.  

As previously demonstrated, S1PR1 in macrophages is elevated in sickle 

mice and was reduced following FTY720 treatment. Since sickle mice with a genetic 

deletion of IL-6 show an overall improved multiple tissue structure and kidney 

function, I detected S1PR1 expression in kidney and spleen isolated from SCD-IL-6-/- 

mice.  By flow cytometric analysis, I detected S1PR1 in tissue macrophages from 

WT or SCD untreated mice and SCD-IL-6-/- mice. As expected, elevated expression 

of S1PR1 in macrophages were identified in SCD versus WT untreated mice (Figure 

7) (43). However, reduced S1PR1 was observed in SCD-IL-6-/- mice (Figure 7) (43). 

Therefore, I demonstrated that IL-6 mediates elevated S1PR1 in SCD tissue 

macrophages.  
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Figure 7. Reduction of S1PR1 expression in IL-6 genetic deletion mice. (A&B)  

Flow cytometric detection of S1PR1 in spleen and kidney tissue macrophages from 

untreated WT or SCD mice and SCD-IL-6-/- mice.  Induced S1PR1 expression was 

detected in SCD mice compared to WT mice. However, reduced S1PR1 expression 

in tissue macrophages was confirmed in SCD-IL-6-/- mice. Values present represent 

means ±SEM. *P<0.05, WT mice versus SCD mice; **P<0.05, SCD mice versus 

SCD-IL-6-/- mice.  

 

3.1.6. S1P-mediated S1PR1 activation upregulates IL-6 to promote further induction 

of S1PR1 regulated in a JAK2-dependent manner.  

As previously demonstrated, S1PR1 is involved in inducing IL-6 in SCD as 

identified by pharmacologic and genetic evidence. I determined whether IL-6 can 

mediate further induction of S1pr1 gene expression in macrophages. To test this, I 

generated bone marrow (BM)-derived macrophages from WT mice as described in 

the Methods Section of this dissertation. I stimulated BM-derived macrophages with 

S1P and measured IL-6 mRNA levels.  As predicted, I observed induction of IL-6 

mRNA and protein levels in S1P-stimulated macrophages (Figure 8 A &B) (43). To 

determine whether a specific S1PR mediates induction of IL-6, I treated 

macrophages with S1P and antagonists for S1PR- 1, 2, 3, and 4 (W146, JTE013, 

TY52156, and CYM50358), respectively. I discovered that macrophages treated with 

S1PR1 antagonists W146 and FTY720 reduced IL-6 mRNA and IL-6 protein level 

(Figure 8 A &B) (43).  For S1P-stimulated macrophages treated with JTE013, 

TY52156, or CYM50358 expressed no obvious differences in IL-6 levels (Figure 8 A 
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&B) (43). This indicates that the other S1PRs have no role in mediating IL-6 

induction in WT mice. 

To determine whether IL-6-mediates S1pr1 mRNA induction, I generated BM-

derived macrophages from WT and IL-6-/-  mice. I stimulated the WT and IL-6-/- 

macrophages with S1P to induce S1pr1 gene expression. I observed that S1P-

stimulated WT macrophages led to further induction of S1pr1 mRNA levels whereas 

reduction of S1pr1 mRNA levels was detected in IL-6-/- macrophages (Figure 8 C) 

(43). Moreover, I treated the S1P-simulated WT and IL-6-/- macrophages with 

FTY720 and W146 to antagonize S1PR1. I discovered that IL-6-/-  macrophages 

expressed reduced S1pr1 mRNA levels compared to WT macrophages (Figure 8 C) 

(43).  

 Additionally, I measured IL-6 mRNA and IL-6 protein levels in S1P-stimulated 

WT macrophages. As expected, I discovered that IL-6 levels were further induced in 

WT macrophages treated with S1P compared to vehicle (Figure 8 D &E) (43).  Since 

I observed an induction of S1P-mediating elevated IL-6 expression in WT 

macrophages, I asked whether S1P regulates IL-6 signaling.  To test this, I 

stimulated WT macrophages with S1P then treated macrophages with JAK2 specific 

inhibitor AG490. JAK2 is a tyrosine kinase that stimulates IL-6 production. I found 

that IL-6 mRNA and IL-6 protein levels were reduced in S1P-stimulated WT 

macrophages treated with AG490 (Figure 8 D &E) (43). 

Next, I determined whether JAK2 mediates S1pr1 gene upregulation in WT 

macrophages.  I tested this by stimulating WT macrophages with S1P and S1pr1 

mRNA expression in macrophages with or without addition of AG490. I found that 
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S1pr1 levels were reduced in WT macrophages treated with AG490 compared to 

S1P-stimulated macrophages without the addition of AG490 (Figure 8 F) (43).   

Overall, I demonstrated that S1P production mediates upregulation of S1PR1 

in SCD. By pharmacologic and genetic tools, I have shown that FTY720-treatment 

and genetic IL-6 deletion reduces multiple tissue injury, improves overall kidney 

dysfunction, and reduces chronic inflammation in SCD (Figure 8 G) (43). 

Mechanistically, I provided pharmacologic evidence that elevated S1pr1 gene 

expression can be blocked by S1PR1 antagonism using FTY720 and JAK2-inhibtion 

by AG490 in macrophages (Figure 8 G) (43).  
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Figure 8.  S1P-activates S1PR1 to promote IL-6 production, which upregulates  

 

 

 

 

 

 

 

 

 

 

Figure 8 
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Figure 8. IL-6 production, which  induces S1pr1 mRNA levels in a JAK2-

dependent manner in mouse BM-derived macrophages. (A &B) WT BM-derived 

macrophages were stimulated with S1P in the presence or absence of antagonists 

for S1PR-1, 2, 3, and 4 followed by a determination of IL-6. (C) WT and IL-6-/-  BM-

derived macrophages were generated to detect S1pr1 mRNA expression. (D &E) 

WT macrophages stimulated with S1P in the presence or absence of  JAK2 inhibitor 

AG490 followed by the determination of  IL-6 mRNA and protein levels. (F)  S1pr1 

mRNA levels were detected in S1P-stimulated WT macrophages treated with 

AG490. Values represent mean ± SEM (N= 6 per group).  (G) Summary of overall 

findings in this work. *P <0.01, S1P-treated WT macrophages compared to vehicle-

treated group. ** P<0.05, S1P-treated group compared to FTY720-treated group, 

S1P-treated group compared to W146-treated or FTY720-treated group, and S1P- 

treated group compared with AG490-treated group (43).  
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Overall, I provided evidence that elevated S1P-S1PR1-underlines IL-6 

induction in macrophage to contribute to systemic and local inflammation in sickle 

mice. By generating SCD-IL-6-/- mice, I demonstrated that IL-6 mediates prolong 

inflammation, which contributes to further upregulation of S1pr1 mRNA expression in 

tissue macrophages. To further demonstrate this mechanism, I generated murine 

BM-derived macrophages to confirm the roles of S1PR1 and IL-6. By antagonizing 

S1PRs in macrophages, I detected IL-6 levels and I found that S1PR1 antagonists 

reduced IL-6 levels whereas the other S1PRs did not. Moreover, I demonstrated that 

IL-6 mediates the upregulation of S1pr1 mRNA expression in a JAK2-dependent 

manner, which confirms the molecular mechanism.   
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3.2. Chapter 2: Elevated circadian Period 2 is beneficial in SCD  
 

This chapter is based on unpublished work by Adebiyi MG, Zhao Z, Youqiong Y, 

Manalo J, Hong Y, Hill R, Gong J, D’Alessandro A, Lee CC, Xian W, McKeon F, 

Kellems RE, Yoo SH, Han L, and Xia Y.  

 

In this chapter, I will present the robust genetic screen I performed in SCD 

mice compared to WT control mice. Several upregulated pathways in SCD were 

identified that involve genes in heme metabolism and inflammation. Unexpectantly, I 

discovered upregulated expression of circadian clock genes in SCD. The role of 

circadian genes in SCD has not been previously studied. This chapter will explore 

the role of a circadian gene Period 2 and its role in SCD.  
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3.2.1. Upregulated expression of circadian genes, inflammatory genes, heme and 

iron homeostatic genes in SCD lung. 

Elevated inflammation, vasculature dysfunction, and overall multiple tissue 

injury is well described in SCD (16, 55). Tissue injury in SCD is a detrimental 

consequence of the disease progression, which is often irreversible. In fact, changes 

in gene expression due to chronic tissue injury reveals how an organ functions.  To 

determine whether changes in gene expression underlie tissue dysfunction in SCD, I 

performed a robust unbiased microarray genetic study as a strategy to examine 

gene expression profile in SCD mice compared to WT control mice. I selected the 

lung as an organ of interest because pulmonary complications are the leading cause 

of SCD patient mortality in the clinic. I isolated RNA from SCD and WT lung then 

reverse transcribed the RNA to generate cDNA. High quality SCD and WT samples 

were used to prepare cDNA libraries and screen for gene detection using Affymetrix 

expression array.  

In the screen, I identified ~ 700 genes specific to lung isolated from SCD and 

WT mice. Amongst the genes identified, I discovered that ~ 200 genes were 

upregulated in the SCD lung compared to WT lung.  By performing pathway 

analyses, I revealed lung specific genes involved in cilium movement, chemokine-

mediated signaling pathway, immune response, axoneme assembly, chemotaxis, 

inflammatory response, cellular response to interleukin-1, response to virus, 

neutrophil chemotaxis, response to interferon-gamma, iron ion homoeostasis, 

positive regulation of I-kappaB kinase (NF-kappaB signaling), rhythmic processes, 

and regulation of lipid metabolic process (Figure 9).   
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Figure 9.  Pathway analyses show upregulated lung specific genes in SCD 

mice. GO terms for the pathways are shown in the figure and the number of genes 

for each pathway identified is also indicated in the figure. P values <0.05 were set as 

cut off and were determined as significant compared to WT.  
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Although several pathways were upregulated in SCD mice, I became 

intrigued by series of genes involved in rhythmic processes, heme and iron 

homeostasis, and inflammatory response as shown in the heat map (Figure 10 ). 

The heat map contains expression of genes at a cut off score of P< 0.05 in SCD and 

WT samples.  Interestingly, several rhythmic process genes were upregulated at a 1 

to 2 fold change in SCD lung, include Basic helix loop helix family member e 40 

(Bhlhe40), D-box binding protein (Dbp), Period 2 (Per2), DNA-binding protein 

inhibitor 1 (Id1), DNA-binding protein inhibitor 2 (Id2), Nuclear receptor subfamily 1 

group D member 1 (Nr1d1), Nuclear receptor subfamily 1 group D member 2 

(Nr1d2), Thyrotroph embryonic factor (Tef), and Nicotinamide 

phosphoribosyltransferase (Nampt).  

Moreover, I identified that genes pertaining to heme and iron homeostasis, 

Lipocalin 2 (Lcn2), Ferrochelatase (Fech) ,Lactoferrin (Ltf), Solute carrier family 25, 

member 37 (Slc25a37), Metalloreductase 2 and 4 (Steap 2 and Steap 4)  were 

elevated in SCD lung (Figure 10).  Additionally, the screen revealed elevated 

inflammatory genes specific to SCD lung. These inflammatory genes were C-C motif 

chemokine ligand 5 (Ccl5), C-C motif chemokine ligand  17 (Ccl17), C-X-C motif 

chemokine ligand 2 (Cxcl2), C-X-C motif chemokine ligand 9 (Cxcl9), C-X-C motif 

chemokine ligand 10 (Cxcl10), C-X-C motif chemokine ligand 13 (Cxcl13), Interferon 

activated 202B (Ifi202b), Complement component 4 a (C4a), Complement 

component 4 b (C4b), Platelet factor 4 (Pf4), C-C chemokine receptor type 2 (Ccr2), 

C-C chemokine receptor type 4 (Ccr4), Nuclear factor, erythroid 2 like 2, (Nfe2l2), 
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Annexin a1 (Anxa 1), Prostaglandin g/h synthase 1 (Ptgs1), Toll-like receptor 6  

(Tlr6),  and A-disintegrin and metalloproteinase domain-containing protein 8  

(Adam8) (Figure 10).   

Using an unbiased approach, I demonstrated elevated expression of lung 

specific inflammatory, iron homeostasis, and rhythmic genes in SCD.  Induced gene 

expression of several heme and iron metabolic genes and inflammatory genes may 

provide intrinsic insight on the effect of intravascular hemolysis at the local tissue 

level.  

.    
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Figure 10 
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Figure 10. Unbiased microarray gene expression screen in SCD lung reveals 

upregulated expression of rhythmic clock genes, heme and iron hemostatic 

genes, and inflammatory genes. Heat map with bar plots correspond to gene 

expression was generated based on log2-tranformation. Gene fold changes was 

normalized to WT based on P<0.05 cut off score. Upregulated genes were indicated 

as red and downregulated genes were indicated as blue.  

 

 

3.2.2. Period 2 (Per2) induction in SCD lung underlines molecular clock function to 

deter further inflammatory response and tissue damage. 

Since I discovered an increase in the expression of rhythmic process genes, I 

determined whether these genes were further upregulated during a circadian cycle. 

The core circadian genes that regulates molecular clock function are Per1, Per2, 

Arnt, and Clock.  I discovered that Arnt gene in WT lung was expressed fold 2 to 3 

higher compared to SCD lung (Figure 11).  
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                        Figure 11 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Circadian gene expression in SCD compared to WT lung.  Scatter 

plot of differentially expressed circadian rhythmic genes in SCD and control lung. 

Red dots show enriched genes in SCD whereas blue dots show elevated genes in 

WT lung. Circadian gene (s) Per2, Dbp, Id1, Nr1d1, and Nr1d2 were increased by 2 

in SCD whereas Arnt1 was increased by 1.5 in WT.   
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I determined whether Per2 and Arnt could be detected in SCD and WT lung  

at various time points during the day. To test this, I purified RNA from SCD and WT 

lung then I performed semiquantification RT-PCR  (qRT-PCR) to detect these 

circadian genes at environmental light and dark conditions, which corresponds to 12 

hours light and 12 hours dark also known as zeitgeber time (ZT). Tissue collection 

was performed as ZT: 1, 7, 13, 19, and 26. When I validated the mRNA expression 

of Per2 and Arnt; I found that Per2 gene expression was much higher in SCD lung 

compared to WT lung during a circadian cycle compared to previous results.  During 

ZT 1-13, Per2 gene expression change  2 to 3 fold, which increased to a fold change 

of 3 to 4 at ZT 19-26 (Figure 12B). Moreover, a phase change in Per2 was apparent 

in SCD lung. 

Figure 12 
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Figure 12.  Circadian Arnt (Bmal) and Per2 mRNA expression levels detected 

by semiquantitative real time polymerase chain reaction (qRT-PCR). Values 

represented as means ± SEM, * P<0.05, Fold change represented as SCD 

normalized to WT.  

 

 

Since elevated Per2 mRNA was seen in SCD mice, I confirmed whether 

PER2 protein levels mimic Per2 mRNA levels in SCD. To test this, I generated SCD 

→ Per2 Luciferase (SCD →Per2 Luc) mice and WT → Per2 Luciferase (WT → Per2 Luc) mice 

by means of adoptive SCD or WT bone marrow (BM ) cells transfer to lethally 

irradiated Per2Luc bioluminescent reporter mice (Figure 13 A) .  Per2 Luc transgenetic 

mice were created by the insertion of the luciferase reporter into the open reading 

frame (ORF) of the Per2 gene (42) . Heterozygous and mutant (Per2 Luc/+ and Per2 

Luc/Luc) mice were used as recipients for the BM transplantation studies. Further 

details on generation of these mice is found in the Methods Section of this 

dissertation. I utilized these mice for detecting PER2 luciferase oscillations in tissue 

cultures isolated from the mice (Figure 13 B). PER2 oscillations in tissue explants 

are robust even after tissues are removed from the animal (42). The PER2 

oscillations reflect a 24 hour cycle that can predict Per2 mRNA and PER2 protein 

expression based on the luciferase levels. Cultures were placed in a water jacketed 

CO2 incubator that is also light protective and equipped for recording PER2 

oscillations in real time (Figure 13 B). Terminology used to describe the PER2 
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oscillations: amplitude and period. Amplitude refers to the height of the PER2 peaks 

and the period refers to frequency of the PER2 peaks (Figure 13 B).   

Since I previously showed that Per2 mRNA levels were induced in the SCD 

lung, I isolated lung from SCD and WT transplanted mice to determine PER2 

luciferase activity in lung tissue cultures for up to 36.5 hours. The frequency of the 

PER2 peaks show no difference in the SCD → Per2 Luc or the WT → Per2 Luc mice. 

Moreover, I observed increase of luciferase expression based on the intensity of the 

PER2 peaks in lung cultures isolated from the SCD → Per2 Luc mice compared to 

control mice. Overall, these results imply that Per2 mRNA and PER2 protein levels 

are elevated in SCD mice compared to WT controls.  
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Figure 13. PER2 luciferase activity is higher in SCD. (A) Generation of Per2 Luc 

mice with SCD or WT phenotype. (B) Schematic of the work-flow for PER2 

oscillation recordings performed in tissue explant cultures. (C) Data analysis of 

luminescence detection in lung cultures. Values represents means ± SEM *P<0.05, 

SCD versus WT lung. N= 3 per group.  

 

 

3.2.3. Molecular clock dysfunction contributes to further tissue damage in SCD  

Since elevated Per2 levels were identified in SCD mice, I determined whether 

the increased Per2 in SCD plays a role in the disease.  Per1 and Per2 are 

homologous genes that are transcriptionally regulated by BMAL and CLOCK genes 

to promote molecular clock function in multiple organs.  The absence of Period 

genes disrupt circadian rhythms due to molecular clock dysfunction (30). To 

determine whether Period genes regulate molecular clocks in SCD, I generated SCD 

phenotypic Per1/Per2 double knock out (dKO) mice by BM transplantation. WT or 

SCD BM was transferred to irradiate WT or Per1/Per2 dKO mice (Figure 14 A).  As 

such four BM transplant groups, WT→ WT, WT→ Per1/Per2 dKO, SCD→ WT, and 

SCD→ Per1/Per2 dKO mice were generated. After 8 weeks post BM transplantation, 

peripheral blood was extracted to detect adoptive transfer of WT or SCD leukocytes 

using fluorescent CD45.1 or CD45.2 expression analyzed by flow cytometry. SCD 

phenotype mice express high chimerism of CD45.1 ~ 84 to 94 % (Table 4).  Control 

WT phenotype mice typically express high CD45.2 and no CD45.1.  
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Additionally, I analyzed multiple hematological parameters by performing 

CBC analyses on SCD and WT chimeric mice.  In SCD mice, the RBC counts range 

was ~ 5.80 to 5.97 x106 cells/ µl, HB range was ~7.55 to 7.83 g/dl, HCT range was 

~35.55 to 36.33 %, RDW range was ~35.33 to 36.33 %, MCV range was ~42.67 to 

45.85,  and reticulocytes (Ret) range was ~32.42  % (Table 4).  These values 

represent typical hematological parameters for sickle mice. In addition to CBC 

analysis, I examined the morphology of erythrocytes isolated from the SCD→ WT 

and SCD→ Per1/Per2 dKO mice to determine the sickling.  I quantified the sickling 

in SCD BM transplanted mice and observed similar sickling percentages ~13% in 

both SCD groups. Moreover, there were no significant differences between the WT 

or Per1/Per2 dKO mice with SCD phenotype.  In comparison to WT mice, RBC 

counts were ~ 10.94 x106 cells/ µl, HGB ~ 12.00 g/dl, HCT ~43 %, and Ret ~4 % 

(Table 4). Chimeric WT or Per1/Per2 dKO mice generated by BM transplantation 

showed typical hematological patterns for WT phenotype mice.  

Unexpectantly, I observed that white blood cells (WBCs) and neutrophils 

(NEs) were increased in SCD→ Per1/Per2 dKO mice. In the WT mice transplanted 

with SCD BM, WBCs were ~31 k/µl, and NEs were ~3.7 k/µl whereas Per1/Per2 

dKO mice with SCD phenotype, WBCs were ~ 50.47 k/µl and NEs were ~7.03 k/µl 

(Table 4).  In comparison to WT or Per1/Per2 dKO with WT phenotype, expressed 

normal ranges of WBCs ~ 3 k/µl and NEs~ 1 k/µl (Table 4). Although Per1/Per2 

does not play a role in sickling, I found that Per1/Per2 may play a significant role in 

immune cells in the periphery.  
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Table 4 

 

Table 4: Bone marrow transplantation of wild-type (WT) or sickle cell disease 

transgenetic (SCD Tg) bone marrow  to irradiated Per1/Per2 dKO or WT mice 

recipients; RBC: red blood cell count; HB: hemoglobin; HCT: hematocrit; RET: 

reticulocytes; WBC: white blood cells, and  NE: neutrophils. Confirmation of sickle 

cells by erythrocyte morphology detection methods and expression of positive 

CD45.1 leukocyte populations in chimeric sickle transplanted mice.*P < 0.05 versus 

WT→ WT; ** P<0.01 verses SCD→ WT; N=5-7. 
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Next, I determined whether the loss of Per1/Per2 plays a role in molecular 

clock dysfunction in multiple tissues.  To test this, I performed histological 

assessments to analyze tissue damage in lung, liver, and spleen.  By comparing 

histopathology of the SCD and WT transplant groups, I observed that SCD → 

Per1/Per2 dKO mice had worse lung damage due to increase infiltration of 

inflammatory cells leading to further lung congestion (Figure 14 B). Evidence of 

further lung damage was determined in SCD → Per1/Per2 dKO mice compared to 

SCD→ WT mice (Figure 14 B &C).   

In addition to the lung, there was evidence of damage occurring in the spleen 

and the liver. Sickle mice have elevated intravascular hemolysis due to chronic 

sickling with severe necrotic areas from chronic accumulation of heme and iron. In 

this case, I observed more necrosis in the sickle organs derived from Per1/Per2 dKO 

mice compared WT (Figure 14 B). No observation of liver or spleen necrosis in WT 

phenotypic mice was observed; but, necrotic regions in liver and spleen were 

evident in sickle phenotypic mice (Figure 14 D & E).  More apoptotic cells could be 

the reason as to why I observed more lung and liver damage in Per1/Per2 deficient 

sickle mice (Figure 14 B-D).   
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Figure 14 
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Figure 14.  Loss of Per1/Per2 contributes to multiple tissue damage in SCD.   

(A) Cartoon of BM transplant groups generated with WT or SCD phenotype. (B) 

Histopathological assessment of lung, liver, and spleen in BM transplant groups. (C-

E) Semiquantitative analysis of multiple tissue histological assessment. Values 

expressed as means ± SEM, *P<0.01, WT → WT or WT →Per1/Per2 dKO versus 

SCD → WT, **P<0.01, SCD → WT versus SCD → Per1/Per2 dKO.  N=5 to 6 mice 

per group.   

 

Severe histopathological outcomes were detected in sickle organs with 

Per1/Per2 genetic deletion. I asked whether Per1/Per2 dKO mice with SCD 

phenotype also had renal and hepatic dysfunction. To test hepatic function, I 

measured alanine aminotransferase (ALT) levels in serum isolated from transplant 

mice. ALT is an enzyme that converts glutamate and pyruvate in order to generate 

α-ketoglutarate and alanine. This mechanism is essential for liver metabolism. 

Although ALT is normally expressed in the liver, elevated ALT levels in the serum 

indicates hepatic dysfunction.  In my sickle mice, I observed an increase in serum 

ALT in SCD → Per1/Per2 dKO mice compared to SCD→ WT mice (Figure 15 A).  

This indicates that Per1/Per2 contributes to hepatic function in sickle mice. 

Moreover, I tested renal function by detection of albumin levels in the urine. Higher 

concentrations of albumin in the urine indicates renal dysfunction. Albumin 

concentrations were normalized to creatinine for each specimen tested.  In my 

analysis of renal function in the sickle mice, I observed higher albumin 
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concentrations in SCD → Per1/Per2 dKO mice, which indicates severe renal 

dysfunction (Figure 15 B). Normal renal function was observed in WT phenotype 

transplanted mice (Figure 15 B).  

 

Figure 15 
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Figure 15.  Hepatic and renal dysfunction in Per1/Per2 deficient sickle mice. (A)  

Analysis of ALT to determine hepatic function in transplant groups. (B) Renal 

dysfunction analysis confirmed by albumin concertation normalized to creatinine. 

Values expressed as means ± SEM, *P<0.01, WT → WT or WT →Per1/Per2 dKO 

versus SCD → WT, **P<0.01, SCD → WT versus SCD → Per1/Per2 dKO.  N=5 to 6 

mice per group.   

 

 

Unexpectantly, I observed increased irradiation sensitivity in Per1/Per2 dKO 

mice with SCD phenotype. Although all of the transplant mice were lethally 

irradiated, the SCD → Per1/Per2 dKO mice were more sensitive due to evidence of 

irradiation damage in the cranial and dorsal regions (Figure 16). No obvious 

irradiation damage was found in WT or Per1/Per2 dKO mice transplanted with WT 

BM was observed. Similarly, irradiation damage was not evident in WT mice 

transplanted with SCD BM. This indicates that peripheral Per1/Per2 has an overall 

protective role in sickle mice.  

 

 

 

 

 

 

 



www.manaraa.com

68 
 

 

Figure 16 

 

 

 

 

 

 

 

 

 

Figure 16. Phenotypic observation of effect of whole body irradiation in transplant 

groups. Increased irradiation sensitivity in Per1/Per2 dKO mice with SCD phenotype. 

 

3.2.4. Systemic inflammation contributes to elevated lung neutrophil infiltration due 

to global genetic deletion of Per1/Per2 in sickle mice.  

Neutrophil adhesion to the lung vasculature contributes to endothelium 

dysfunction in SCD pathophysiology. Since an increase of neutrophils in the 

circulation was observed in SCD →Per1/Per2 dKO genetic deficient mice compared 

to the sickle→WT mice (Table 4), I determined whether peripheral Per1/Per2 was 

involved in regulating inflammatory responses in the lung. As indicated by 
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histological studies, I observed further lung congestion due to increased 

inflammatory infiltration in the lung. The majority of inflammatory cell types were BM-

derived, which can infiltrate to tissues from the periphery. Although mixed 

populations of BM-derived and resident cell types was found in multiple tissues 

isolated from Per1/Per2 dKO mice. The role of Per1/Per2 in multiple immune cell 

types and systemic inflammation in sickle lung is not fully understood.  
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Based on the CBC results (Table 4), I generated a hypothesis that Per1/Per2 

dKO sickle mice have elevated systemic inflammation, which contributes to further 

lung tissue damage. To test this, I isolated whole lung from mice transplanted with 

SCD or WT BM and performed immunohistochemistry to detect neutrophils  (Ly6-

neutrophil maker). In WT control mice, I detected no neutrophil infiltration to 

vasculature walls in the lungs (Figure 17 A &B). However, I observed more 

neutrophils in the sickle lungs as indicated by red arrows (Figure 17 A).  My original 

hypothesis is that neutrophil trafficking due to genetic deletion of Per1/Per2 were 

further enhanced in sickle lungs. I demonstrated this by detecting increased 

numbers of neutrophils  in sickle Per1/Per2 dKO lungs (Figure 17 B). Based on 



www.manaraa.com

71 
 

these findings, I conclude that genetic deletion of Per1/Per2 in sickle mice 

contributes to more neutrophils in the lung tissue.  

 

Figure 17 
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Figure 17.  Loss of Per1/Per2 in SCD contribute to increased pulmonary 

neutrophil infiltration. (A) Immunohistochemistry images to show Ly6 neutrophil 

expression in WT→WT, WT → Per1/Per2 dKO, SCD →WT, and SCD → Per1/Per2 

dKO. Arrows identify presence of neutrophils in the lung vasculature. (B) Images 

were captured at a 20X objective for counting neutrophils per field. 5 or 6 slides were 

stained for Ly6 neutrophil marker in WT or SCD transplant groups. For WT →WT 

and WT → Per1/Per2 dKO, neutrophils were not detected (ND). *P<0.05, SCD → 

WT versus WT →WT or WT → Per1/Per2dKO; **P<0.05, SCD → WT versus SCD→ 

Per1/Per2dKO.  

 

 

 

3.2.5. Genetic deletion of Per1/Per2 in sickle mice is involved in tissue lung 

dysfunction as confirmed by further induction of inflammatory Toll-like receptor 4 

(Tlr4) and IL-6 gene expression as well as elevated IL-6 protein levels in 

bronchoalveolar lavage (BAL) fluid.   

 

In addition to elevated inflammatory cells in the periphery, the presence of 

neutrophils in the lung indicates that inflammation is further enhanced in Per1/Per2 

deficient sickle mice. To determine whether elevated inflammatory cells in the sickle 

lung contributes to upregulated inflammatory gene expression, I examined Tlr4 and 

IL-6 mRNA levels to determine whether genes are induced in sickle lung tissue. As 
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expected, I observed an upregulation of Tlr4 and IL-6 mRNA expression in sickle 

mice compared to control mice (Figure 18 A &B). In fact, I observed further induction 

of these inflammatory genes in SCD→ Per1/Per2 dKO mice compared to SCD→ 

WT mice, which indicates that genetic deletion of Per1/Per2 contributes to this 

induced inflammatory gene response.  

Since I observed further induced IL-6 mRNA expression in the lung, I 

validated plasma and systemic IL-6 protein levels in transplanted mice. I measured 

IL-6 protein levels in BAL fluid isolated extracted from lung, a common technique to 

diagnose lung damage in mice. In WT BM transplanted mice, I detected ~200 pg/mL 

of IL-6 protein levels in the lung fluid. In normal mice, this is an acceptable 

concentration (Figure 17 C). Moreover, in sickle mice, higher levels of IL-6 protein 

levels were detected, which indicates severe lung dysfunction. In SCD → WT lung, I 

detected even higher concentration of IL-6 protein levels at ~500 pg/mL (Figure 18 

C). In SCD →Per1/Per2 dKO lung, even more IL-6 were detected at ~650 pg/mL 

(Figure 18 C).  Taken  together, I conclude that elevated Tlr4 and IL-6 inflammatory 

gene expression and further increase of IL-6 protein levels indicate that genetic 

deletion of Per1/Per2 play a role in severe lung dysfunction in SCD mice.   
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Figure 18.  Analysis of Tlr4 and IL-6 inflammatory gene expression in lung 

tissue and IL-6 protein detection in BAL fluid. Values represent means ±SEM, 

*P<0.05, SCD → WT versus WT → WT or WT →   Per1/Per2dKO; **P<0.01, SCD 

→ WT versus SCD→ Per1/Per2dKO. 
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Since I generated sickle and WT mice with or without Per1/Per2 deficiency by 

bone marrow transplantation studies. I speculate that the increased of NEs are BM-

derived Per1+/+/Per2+/+ cells. However, the infiltration of neutrophils to the lung 

implies a mixed population of cells that are either Per1-/-/Per2-/- and Per1+/+/Per2+/+. I 

provide evidence of more lung and liver tissue damage in the sickle mice with 

Per1/Per2 deficiency. In addition to this finding, I observed more irradiation damage 

in sickle phenotypic mice with Per1/Per2 deficiency, which attributes the importance 

of Period genes in regulating cellular processes required for tissue function. With 

these observations, I speculate that Per1/Per2 play a role in regulating systemic 

inflammation, tissue damage, and dysfunction in SCD.  
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 Chapter 3: Elevated heme and iron levels in sickle mice is 

mediated by heme oxygenase 1 (HO-1)  

 

This chapter is based on unpublished work by Adebiyi MG, Zhao Z, Youqiong Y, 

Manalo J, Hong Y, Hill R, Gong J, D’Alessandro A, Lee CC, Xian W, McKeon F, 

Kellems RE, Yoo SH, Han L, and Xia Y. 

 

In this chapter, I will discuss more details as to why sickle mice with 

Per1/Per2 deficiency have more severe tissue damage. Since intravascular 

hemolysis is the cause of multiple tissue dysfunction, I will explore the role of an 

important enzyme heme oxygenase 1 (HO-1), which mediates heme degradation 

that contributes to iron release and trafficking to multiple  tissues.  
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3.3.1. Systemic hemolysis meditates heme and iron deposition in lung.  

Erythrocyte sickling is the hallmark of SCD. Hemolysis contributes to the 

release of heme, globin proteins, and iron in the periphery, which can traffic to 

multiple organs such as the liver. Elevated heme and iron in the organs can promote 

devastating effects due to increase toxicity that can result in multiple organ 

dysfunction. Particularly, iron can form dangerous compounds in the presence of 

reactive oxygen species (ROS), but the mechanism regarding elevated iron in the 

lungs is not fully understood. To determine whether pulmonary organ dysfunction in 

sickle mice is due to elevated levels of heme and iron deposition, I performed Perl’s 

Prussian blue iron immunohistochemistry studies to examine local iron content  in 

multiple organs isolated from transplanted mice with WT and SCD phenotype. As 

expected, I observed more iron in the spleen and liver vasculature in the sickle 

transplant mice, which indicates that sickling contributes to iron deposition to these 

organs (Figure 19 A). However,  in WT phenotypic transplant mice no increase in 

iron was observed (Figure 19 A).  

I discovered that Per1/Per2 deficient mice with sickle phenotype expressed 

more iron in the liver compared to other sickle phenotypic WT transplanted mice 

(Figure 19 A). I performed analyses to compare iron deposition in the sickle mouse 

spleen and liver. As revealed from my immunohistological studies, I observed more 

iron expression in sickle mouse liver with Per1/Per2 deficiency compared to the 

other sickle mouse group (Figure 19 B).  I did not observe obvious differences in iron 

levels to the sickle spleens in the WT or Per1/Per2 deficient sickle mice (Figure 19 



www.manaraa.com

78 
 

C). As indicated in previous studies, spleen and liver are expected to have more iron 

since erythrocyte recycling mechanisms take place in these organs. Interestingly, I 

observed that iron levels can increase in the Per1/Per2 deficient sickle mouse lung 

and not in WT sickle mouse lung, which is unexpected (Figure 19 A).   

To determine whether elevated heme in the sickle mouse lung contributes to 

lung dysfunction, I performed biochemical analyses to detect heme levels in WT and 

sickle lung. As expected, I measured more heme in sickle lung than in the WT lung 

(Figure 19 D).  Interestingly, higher heme was detected in Per1/Per2 deficient sickle 

lungs compared to the WT sickle lungs, which indicates that elevated heme content 

in the lung is associated with the loss of  Per1/Per2 (Figure 19 D).    

Lastly, heme degradation contributes to generation of iron and bilirubin, 

products of heme metabolism. Since elevated heme and iron were detected in sickle 

mice, I measured serum levels of total bilirubin to determine whether chronic 

hemolysis mediates systemic production of bilirubin release from damaged 

erythrocytes. As expected, I observed that sickle mice had elevated bilirubin, which 

was further increased in Per1/Per2 deficient sickle mice (Figure 19 E). Based on 

these results, elevated heme, iron, and bilirubin is further induced in Per1/Per2 

deficient sickle mice, which indicates that these dangerous metabolic compounds 

play a role in multiple organ dysfunction in sickle mice.  
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Figure 19.  Heme, iron, and bilirubin are increased in sickle mice with 

Per1/Per2 deficiency.   (A) Perl’s Prussian blue iron immunohistochemistry staining 

of lung, liver, and spleen isolated from WT and SCD phenotypic mice with or without 

Per1/Per2 deficiency. (B-C) Semiquantification analyses of liver and spleen. (D) 

Biochemical detection of heme in the lung. (E) Total serum levels of bilirubin isolated 

from transplanted mice. Values represented as means ±SEM, *P<0.05, SCD → WT 

versus WT → WT or WT → Per1/Per2 dKO; **P<0.01, SCD → WT versus SCD→ 

Per1/Per2 dKO. ND means not detected.  
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3.3.2. Enhanced heme oxygenase 1 (HO-1) expression in macrophages is required 

for compensation due to elevated inflammation in SCD lung.  

Since systemic hemolysis is evident in sickle mice and contributes to induced 

heme, iron, and bilirubin levels, I determined whether heme oxygenase 1 (HO-1), 

which is the enzyme that mediates heme degradation. In sickle mice, HO-1 is widely 

expressed in multiple cell types including macrophages and endothelial cells, which 

mediate heme degradation. In fact, further induction of HO-1 is beneficial in SCD 

due to degradation of heme to generate metabolic products used for essential 

biological processes such as erythropoiesis.  

Although multiple cell types express HO-1 and surprisingly iron deposition 

was identified in the lung due to the loss of Per1/Per2 in sickle mice, I determined 

whether alveolar macrophages express HO-1. As previously shown, I observed iron 

content that was not widely observed in the Per1/Per2 deficient sickle mouse lung, 

therefore, I tested whether alveolar macrophages expressed HO-1 to contribute to 

iron deposition in the lung. To test this, I isolated WT and SCD mouse lung with or 

without Per1/Per2 and performed immunohistochemistry studies. Interestingly, I 

observed wide distribution of HO-1 expression in sickle mice compared to control 

mice, which is likely due intravascular sickling events in the organ (Figure 20).  In 

fact, I observed a specific lung vasculature region that distinctly contain HO-1 

positive cell types in Per1/Per2 deficient sickle mice, which confirms that HO-1 

mediates heme and iron deposition in these cells (Figure 20). To determine whether 

macrophages express HO-1, I co-stained lung sections with F4/80, which is a 

specific macrophage marker. In sickle mice, I observed more F4/80+ cells in the 
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sickle lung, but,  I did not observe significant differences in F4/80+ expression in WT 

transplanted mice (Figure 20).  Overall, I have observed more HO-1 in lung 

macrophages  in Per1/Per2 deficient sickle mice.  
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Figure 20. Immunohistochemistry studies reveal HO-1 expression in peripheral 

lung macrophages. Blue panel show DAPI staining of cellular nuclei, red panel 

show HO-1, and green panel show F4/80.  
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Illustration 3. Summary of unpublished results for chapter 2 and chapter 3. Overall, 

elevated Per2 was identified in SCD tissue and has robust circadian rhythmic 

expression in SCD lung. Additionally, I discovered that when Per1/Per2 is taken 
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away this causes further IL-6 levels, iron overload, and further multiple organ 

damage in SCD.   

 

Systemic hemolysis in SCD contributes to iron and heme deposition in 

multiple organs. I provide evidence that Per1/Per2 gene deletion in sickle mice 

contributes to further heme and iron in multiple organs. Elevated heme and iron can 

be toxic if not used efficiently for biological processes or if too much heme and iron 

disrupts overall organ functioning. Based on previous results, I demonstrated that 

Per1/Per2 gene deletion contributes to further hepatic dysfunction in sickle mice 

(Chapter 2).  Altered liver metabolism due to increased heme and iron led to further 

hepatic dysfunction. In the lung, neutrophil infiltration and elevated inflammatory 

gene expression contribute to tissue damage. Unexpectantly, I discovered elevated 

levels of iron deposition in the SCD phenotypic Per1/Per2 deficient lung, which led 

me to determine whether macrophages either Per1+/+/Per2 +/+ or Per1-/-/Per2-/- 

contributed to iron deposition in the lung. As revealed by my immunohistochemistry 

studies, I showed that alveolar macrophages in sickle Per1/Per2 dKO mice were 

also positive for HO-1, which is the enzyme that mediates heme and iron 

degradation in macrophages. Taken together, I have identified a potential target in 

macrophages that regulates heme and iron metabolism to promote heme and iron 

deposition.  
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IV. Discussion  
 

4.1. Summary of dissertation chapters. 

Since elevated SphK1-S1P mediates sickling, hemolysis, and multiple organ 

damage in SCD.  My work addressed how S1P signaling underlines SCD 

progression.  In chapter 1, I discussed how elevated SphK1-S1P production 

upregulates S1PR1, which can be targeted by FDA-approved drug FTY720. 

Although targeting S1PR1 does not affect erythrocyte sickling, I discovered that 

elevated S1PR1 and IL-6 is regulated in a JAK2-dependent manner, which 

contributes to further multiple tissue damage, systemic inflammation, and tissue 

dysfunction in SCD.  Since multiple organ damage is a severe consequence of SCD 

patient morbidity and mortality, the mechanism that underlies organ damage is not 

fully understood. To explore these potential mechanisms, I performed a high 

throughput unbiased screen, which revealed a series of genes in inflammatory 

response, heme and iron metabolism, and circadian rhythmic genes.  In addition to 

circadian clock function, Per1/Per2 genes play a role in organ and cellular function.  

Therefore, in chapter 2, I discuss how the loss of Per1/Per2 in SCD contributes to 

elevated IL-6 to promote systemic inflammation and multiple tissue damage. 

Furthermore, Per1/Per2 play a role in heme metabolism. Elevated heme and iron 

level deposition in SCD can promote organ toxicity. In chapter 3, I discussed how 

the loss of Per1/Per2 in SCD contributes to elevated heme deposition in SCD tissue. 

Due to increase heme content, this can lead to upregulated HO-1 activity, which is 

required for compensation.   
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Illustration 4 
 

 

Illustration 4: Summary of dissertation chapters 1-3. In chapter 1, I have identified 

that elevated S1P-S1PR1 contributes to increase IL-6, which promotes systemic 

inflammation, multiple tissue damage, and tissue dysfunction. In chapter 2, I 

discovered that the loss of Per1/Per2 in SCD contributes to increase IL-6, which 
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contributes to an increase of multiple tissue damage, systemic inflammation, and 

tissue dysfunction. In chapter 3, I demonstrated that the loss of Per1/Per2 in SCD 

mediates increase heme and iron deposition in multiple organs, which further 

increases HO-1 activity for compensation.  

 

4.2. Overview of circadian clocks mediating physiological processes in normal and 

disease conditions. 

The circadian clock can regulate physiological processes, such as 

cardiovascular activity, immunity, hormonal secretion, energy metabolism, and 

behavior (56-58). Disturbances alter the circadian clock and obstruct multiple 

processes that are not genetically adaptable and are detrimental (59, 60). Circadian 

clock synchronizers function to maintain self-sustaining circadian gene oscillation 

patterns (33). The peripheral clocks are regulated in a diurnal manner, which are not 

necessarily dependent on environmental light cues (61). Peripheral clocks function 

independently from the core central clock in the suprachiasmatic nuclei (SCN) 

located in the hypothalamus. Cells in the SCN are primarily synchronized by external 

light (62). Multiple cell types in peripheral tissues also orchestrate self-sustaining 

circadian rhythms that can persist independently of environmental cues, i.e. light 

(63). Depending on the physiological processes, energy metabolism can be 

regulated by biological clocks in peripheral organs, such as the pancreas, adrenal 

glands, and the liver (62). Food consumption is regulated by the circadian clock and 

functions as a metabolic signal to synchronize rhythms in the liver, but, not in SCN 

(63, 64). Circadian disturbances and other circadian cycle manipulations, such as 
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excess light or dim light can restrict feeding, which can obstruct metabolic signals 

that contribute to disease (65, 66). However, independent of light and metabolic 

influences, cancer, cardiovascular diseases, and diabetes can result due to 

endogenous circadian clock defects that promote disease progression (23, 56, 57, 

67).  

 

4.3. Heme is a circadian clock regulator.  

Metabolites function as signals that regulate circadian clock function (57). 

These metabolites include heme, glucocorticoids, lipids, insulin, carbohydrates, 

amino acids, and fatty acids that can function as central and peripheral clock 

synchronizers (68). For example, glucocorticoids, the steroid hormones, are 

released from the adrenal glands, but, are regulated by the central clock in the SCN 

(69). Glucocorticoids are essential for synchronizing rhythms in peripheral organs 

and have functions in mediating inflammatory responses that contribute to disease 

(57, 70). Heme is released from erythrocytes and functions to regulate oxygen 

transport and other biochemical processes. Excess of heme or other metabolites 

can obstruct proper clock function, which is detrimental (71-73). The biochemical 

structure of heme contains unique per-arnt-sim (PAS) regions, which function to 

facilitate ligand binding to receptor, which can mediate signal transduction pathways 

(74). These heme-PAS domains are ubiquitously expressed including archaea and 

higher complex eukaryotic species, and have a variety of functions depending on the 

species (74). Heme-PAS complex can also facilitate transcription of circadian genes 

such as Per2, Npas2, Nr1d1, and Nr1d2 (31, 75, 76). 
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 Heme binding to neuronal Per-Arnt-Sim motif 2 (nPAS2) facilitates BMAL1-

NPAS2 complex binding to carbon monoxide (CO) sensitive regions on DNA (77). 

CO suppresses BMAL-NPAS2 binding to promoter regions thus inhibiting 

transcription of circadian genes, like Per1/Per2. Moreover, HO-1 is expressed in a 

variety of cell types including endothelial and myeloid cells, which function to restore 

circadian rhythms during tissue injury. In fact, myeloid cells expressing HO-1 confer 

protection in the brains of subarachnoid hemorrhage (SAH) mice models by 

suppressing apoptosis (78, 79). It has been demonstrated by pharmacologic 

inhibition and genetic models that hindering HO-1 activity can alter proper clock 

function in Drosophila and mice (77). When CO production is suppressed this can 

upregulate BMAL-NPAS2 complex promoting clock gene transcription that can 

contribute to abnormal glucose metabolism in mouse liver (77). Since complete 

darkness can function as a metabolic signal in mice (59), a microarray analysis was 

performed to demonstrate that light pulses in mice kept in darkness can regulate 

heme and iron metabolic related genes (80). In fact, light exposure functions as a 

stressor to induce heme oxygenase 2 (HO-2), a homologue to heme oxygenase 1 

(HO-1) (80). Other genes discovered from the screen were:  Stearoyl‐coenzyme A 

desaturase 1 (SCD1), Ferritin heavy and light chain 1 (FTH and FTL1), Matrix 

metalloproteinase 11 (MMP11), and Metallothionein1 (MT1) (80). Other detrimental 

contributions of elevated iron in the tissue includes oxidative stress due to iron 

oxidation from ferrous to ferric states. Elevated iron increases AMP-activated protein 

kinase (AMPK) activity thus affecting insulin and glucose signaling in mice (81).   

4.4. Pharmacologic induction of heme oxygenase (HO-1) for treating SCD. 
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Hemin, a ferric protoporphyrin chloride that is a derivative of heme, can alter 

circadian clock function by obstructing heme transcriptional modulation in cells. 

Further studies have demonstrated that hemin can be deleterious in cells and mice 

due to cellular toxicity that affects metabolic functions and pulmonary vaso-occlusive 

events (72, 73, 82). The mechanism involved requires heme oxygenase-1 (HO-1), 

which can be induced by heme or hemin. HO-1 is an enzyme that catabolizes heme 

to generate CO, iron, and bilirubin, which are products of heme degradation 

(Illustration 5).  

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 5. Mechanism of heme degradation pathway. 
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Further induction of HO-1-mediating heme degradation is beneficial in SCD. 

Due to elevated heme content in sickle cell organs, further HO-1 induction is 

necessary in order to compensate for excess heme, which contributes to vascular 

inflammation in SCD (83). In SCD, potential therapeutics involving inhaled CO and 

NO gases to improve vasodilation induce HO-1 expression thus inhibiting stasis in 

SCD mice. Notably, CO production mediated by HO-1 activity has potent anti-

inflammatory and anti-oxidative effects in the vasculature (84). In fact, previous 

reports have implied that a PEGylated form of hemoglobin saturated with CO gas 

recognized as MP4CO reduced hypoxia and hemin-induced stasis in SCD mice (85). 

HO-1 induction mediates nuclear erythroid factor 2 (Nrf2), which is a 

transcription factor that regulates HO-1 and other anti-oxidative genes (86). In my 

study, I discovered that the loss of Per1/Per2 plays a role in elevated heme and iron 

deposition in sickle mice, which contributes to further multiple organ damage. I 

determined whether HO-1 mediates heme and iron degradation in my sickle mice 

and found that increase of HO-1 expression in Per1/Per2 deficient sickle mice plays 

a role in heme and iron deposition in these mice. Thus, I speculate that systemic 

hemolysis in SCD contributes to release of hemoglobin: haptoglobin (HB:HP) 

complexes to the circulation. On cellular surfaces of multiple cell types, such as 

macrophages, contains a CD163, a scavenger hemoglobin receptor, which 

endocytosis HB:HP complexes from the circulation (87, 88). HB:HP and CD163 

receptor gets endocytosed by lysosomes for degradation. Moreover, heme bound 

iron and globin proteins get released from the lysosomes and HO-1 mediates the 
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degradation of heme in the cytoplasm. Heme can bind to heme receptors such as 

BACH 1 or 2 and REV-ERα or REV-ERβ located on the nuclear membrane (75). 

Heme-binding to heme receptors can induce transcription of Per2 (31). Since iron is 

released from heme bounded to iron, iron in ferric or ferrous form can be transported 

within the cell. Elevated iron deposition in organs can be detrimental due to 

inefficient iron recycling thus causing iron overload as demonstrated in my work. 

Although, the mechanism that contributes to Period genes expression in SCD is still 

unclear, I hypothesize that elevated heme mediate Per2 gene expression has a 

beneficial role in SCD (Illustration 6).  

                       Illustration 6 
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Illustration 6. Possible mechanism involving scavenger CD163 macrophage 

receptor mediating heme bound iron binding to heme receptors on nuclei to promote 

Per2 transcription.  

 

 

Additionally, dimethyl furmate, an agonist for Nrf2 signaling activation, can 

stimulate a HO-1 response to combat excess heme content in SCD organs (84). 

One of the functions of dimethyl furmate is to increase fetal hemoglobin (HbF), which 

reduces HbS polymerization. The chronic administration of dimethyl furmate in SCD 

mice reduces toxic heme accumulation in local tissues thus reducing  heme-

mediated inflammatory responses (89). Elevated of HbF in SCD and β-thalassemia 

can contribute to overall improved conditions in disease (90). In recent years, 

evidence has indicated that BCL11A protein is a repressor for HbF expression that 

contributes to elevated HbS polymerization, which mediates hemolytic anemia and 

end organ damage (91). BCL11A is a transcription factor that is required for B-cell 

development and expressed in mature erythroid cells (90, 91). In SCD, genetically 

targeting BCL11A lead to overall improvement in SCD phenotype (91).  

 

4.5. Macrophages induction of HO-1 contribute to iron overload in SCD.  
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Altered metabolic signals are directly related to molecular clock dysfunction 

that contribute to cardiovascular, behavioral, endocrine, and immune diseases (10, 

11), elevated inflammation in an immune cell dependent manner can result in 

dampening circadian rhythms that directly affect clock function in diseases such as 

COPD and inflammatory rheumatoid arthritis (70, 92, 93). In experimental 

inflammatory conditions, LPS-mediated inflammatory responses can trigger Per2 

gene expression in peripheral blood mononuclear cells (22, 94-96).  Additionally, 

natural killer cells, neutrophils, and macrophages have functional clocks that can be 

regulated by glucocorticoids and other metabolic signals (39, 97-101). In fact, 

infiltrating macrophages upregulate transcription of Per1, Per2, and N1rd1 circadian 

gene expression, which can promote inflammatory responses that contribute to 

tissue destruction (12-14).  Although altered metabolic signals in immune cells are 

directly related to molecular clock dysfunction, this can contribute to abnormal 

secretion of interleukin 6 (IL-6), tumor necrosis factor alpha (TNFα), chemokine- (C-

C motif) ligand 2 (CCL2), interferon gamma (INFy), prostaglandins E2 (PGE2), and 

toll-like receptor 9 (TLR9) signaling in macrophages (36, 102-106).  

Additionally, macrophages express HO-1, to support a variety of physiological 

processes that involve heme detoxification and iron recycling required for 

erythropoiesis. Hemoglobin-haptoglobin (HB-HP) is a complex that induces HO-1 

activity in macrophages (87). CD163 is a scavenger receptor expressed on 

macrophages, which facilitates the uptake of HB-HP complexes via an endocytosis-

dependent manner (88, 107, 108). Moreover, heme released from hemoglobin can 

mediate HO-1 induction in macrophages by upregulating ferroportin (FPN), an iron 
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transport, to regulate iron metabolism (109). In addition, elevated expression of 

ferritin, an iron storage protein is mediated by CD163 receptor, which is beneficial for 

combating iron overload (110).  

HO-1 induction in macrophages can have beneficial roles in disease. Excess 

iron is toxic to the cell due to generation of ROS mediated by Fenton and Harber 

Weiss reactions that can promote DNA damage, lipid peroxidation, and cross-linking 

of proteins (111, 112). Furthermore, elevated heme can mediate TLR4 signaling, 

which can induce the expression of inflammatory cytokines like IL-6 and TNF-α in 

SCD mice (113, 114).   

Sickle mice with biological clock dysfunction have a mixed population of cell 

types. BM-derived cells that are Per1+/+/Per2+/+ whereas the peripheral cells in 

resident tissues are Per1-/-/Per2-/- . With this possibility, macrophages expressing 

HO-1 has a mixed morphology, which may have diverse roles in disease such as M1 

or M2 macrophages, which have pro-inflammatory or anti-inflammatory functions in 

disease (Illustration 7). Taken together, I conclude that elevated HO-1 in 

macrophages contributes to heme and iron deposition to promote multiple organ 

dysfunction in sickle mice (Illustration 7).  
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Illustration 7. Mixed cell populations that are BM-derived Per1+/+/Per2-/- and resident 

Per1-/-/Per2-/- express HO-1, which regulates heme degradation in macrophages. 

 

Macrophage  

Per1
+/+

/Per2
+/+

 Per1
-/-

/Per2
-/-

 

Trafficking to peripheral organs 

SCD 

Biological clock 

dysfunction 

HO-1 

Intravascular 

Hemolysis   

Heme bound iron  

Illustration 7 



www.manaraa.com

98 
 

 

4.6. Elevated adenosine-mediate ADORA2B activation to promote Per2 induction, 

which improves disease severity. 

Circadian dysfunction contributes to metabolic defects that can promote 

energy imbalance in the animal (115). In SCD, metabolic changes in the 

erythrocytes contribute to poor oxygen release and further sickling (13, 116, 117). 

Metabolite precursors such as adenosine can facilitate 2,3-DPG induction, an 

allosteric modulator, that prompts oxygen release from hemoglobin (13). Adenosine 

is derived from adenosine triphosphate (ATP), a nucleoside with three triphosphate 

groups that regulates energy metabolism. Elevated extracellular adenosine signals 

via four G-protein coupled receptors that are ubiquitously expressed in a variety of 

cell types, including epithelial cells, immune cells, and erythrocytes (41). Amongst 

the four G-protein coupled receptors, ADORA2B has the lowest affinity for 

adenosine, which is activated due to excess accumulation of extracellular 

adenosine. In the erythrocytes, elevated adenosine mediated activation of  

ADORA2B receptor facilitates glycolytic pathways that function in oxygen release. 

Adenosine signaling via ADORA2B activation has known beneficial roles in hypoxia 

adaptation under normal conditions (118, 119). However, in inflammatory pulmonary 

disease and in SCD, elevated adenosine-mediated ADORA2B activation is 

detrimental and contributes to further disease progression (13, 118, 120). In fact, 

elevated adenosine mediated ADORA2B activation contributes to further PER2 

induction in cardiomyocytes. Further PER2 induction is regulated by upstream 
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enhancer elements that promote transcription of hypoxia-related genes, such as 

hypoxia inducible factor alpha (Hif1α) during hypoxic events (121).  

Hypoxia is a dangerous condition, in which, systemic deprivation of oxygen 

can result in inflammatory responses and end organ damage (122, 123). HIF 

subunits HIF1α and HIF1β (also known as BMAL), are key components of hypoxia 

signaling. Hypoxia can drive glycolytic processes and further contribute to metabolic 

disease (124). PER2 induction mediated by ADORA2B signaling can regulate 

glycolytic processes in a HIF1α dependent manner during ischemic-reperfusion 

injury (25). Glucocorticoids can mediate PER2 induction to promote clock function 

(92). In SCD, chronic hypoxia occurs due to systemic oxygen release from 

hemoglobin S (HbS) mediating sickling (17). In fact, further sickling is regulated by 

sphingosine kinase 1 (SphK1) in erythrocytes regulated in an adenosine-ADORA2B 

dependent manner (14). Due to oxygen release events, deoxy-hemoglobin S 

(deoxy-HbS) forms insoluble polymers that results in enhanced polymerization to 

promote vaso-occlusion and tissue damage in SCD (117). In the normal setting, 

SphK1-mediate S1P production contributes to 2, 3-DPG induction in erythrocytes, 

which plays a role in hypoxia adaptation in individuals at high-altitude (125). In SCD, 

elevated SphK1-S1P production in erythrocytes mediates sickling and end organ 

damage (14). Overall, the role of hypoxia contributing to further sickling is known; 

however, it is still uncertain whether hypoxia-mediate HIF1α is regulated by further 

PER2 induction in the periphery to promote SCD progression.  

4.7. Evidence of oxidative-reductive stress in sickle lung tissue. 
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Hypoxia plays a role in the pathophysiological impact of oxidative stress (119, 

120), collagen formation (121, 122), mitochondria dysfunction (123), and 

inflammation (124) in the lung. Hypoxia mediates erythrocyte sickling and further 

progression of SCD; however, the role of induced erythrocyte sickling and 

subsequently heme and iron trafficking to organs remains unclear. As a part of my 

dissertation studies, I determined whether molecular clock dysfunction mediated by 

the loss of Per1/Per2 in sickle mice plays a role in lung dysfunction. I have 

preliminary evidence that indicates that oxidative-reductive process genes are 

differentially expressed in the sickle lung with Per1/Per2 deficiency. These results 

were generated by an unbiased mRNA sequencing of lung tissue isolated from SCD 

or WT phenotypic mice with or without Per1/Per2. Amongst these RNA transcripts 

detected in sickle lung were: Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 

(Plod1), Malic enzyme 3, NADP (+)-dependent mitochondrial (Me3), Apoptosis 

inducing factor, (mitochondria associated 2) (Aifm2), Malate dehydrogenase 2, NAD 

(mitochondrial) (Mdh2), NADPH oxidase 1 (Nox1), Lysyl oxidase-like 4 (Loxl4), and 

Deiodinase, iodothyronine, type I (Dio1) (Illustration 8A). Upregulated mRNA levels 

were Plod1, Me3, Aifm2, and Mdh2 in Per1/Per2 deficient sickle mouse lung 

(Illustration 8A).  

Further, I also identified several genes that were upregulated in Per1/Per2 

deficient transplant mouse lung compared to WT transplanted lung.  WT → 

Per1/Per2 dKO lungs were normalized WT→ WT lungs. Amongst the transcripts 

detected were Prolyl 4-hydroxylase subunit alpha 3 (P4ha3), Biliverdin reductase A 

(Blvra), Peptidylglycine alpha-amidating monooxygenase (Pam), Dihydrouridine 
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synthase 3 like (Dus3l), Acyl-CoA dehydrogenase family member 8 (Acad8), 

Methionine sulfoxide reductase B2 (Msrb2), Delta(4)-desaturase, sphingolipid 1 

(Degs1), Cytochrome P450 family 1 subfamily A member 1 (Cyp1a1) , 

Protoporphyrinogen oxidase (Ppox), malic enzyme 1, NADP(+)-dependent (Me1), 

Cytochrome P450, family 26, subfamily b, polypeptide 1 (Cyp26b1), D-2-

hydroxyglutarate dehydrogenase (D2hgdh), Acyl-Coenzyme A oxidase-like (Acoxl), 

Scavenger receptor CD163 (Cd163), and Interferon activated gene 202B (Ifi202b) 

(Illustration 8B).  Interestingly, upregulated mRNA expression of P4ha3, Blvra, Pam, 

Cd163 and Ifi202b, was identified in WT→ Per1/Per2 dKO mice (Illustration 8B).  

Specifically, Blvra and CD163 have roles in regulating heme-iron metabolism (20, 

126).  
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Illustration 8. Differential expression of oxidative-reductive genes identified in 

mRNA sequencing of the lung isolated from SCD or WT BM transplant mice with or 

without Per1/Per2. P<0.05 cut off score was used to determine significance of 

genes. Upregulated genes were indicated as red and downregulated genes were 
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indicated as blue. Analyses revealed differential gene expression in SCD →WT 

compared to SCD → Per1/ Per2 dKO or WT → WT or WT→ Per1/Per2 dKO mice.  

 

4.8. Future directions.  

Oxidative stress, reactive oxidative species, and reduced anti-oxidative 

responses in SCD can be a regulated by Per 2. Future directions include performing 

metabolomics arrays to identify molecular clock functions at the cellular level in my 

WT and SCD transplanted mice. Since I transplanted SCD or WT bone marrow (BM) 

to irradiated Per1/Per2 dKO mice, it is likely that heterogeneous populations of cell 

types exist in the SCD and WT BM transplant mice due to Per1/Per2 positive BM-

derived cells that are expressed in the periphery. BM cells can differentiate to 

myeloid, lymphoid, and erythroid progenitor cell lineages that would be Per1/Per2 

positive. These circulating cells can then infiltrate multiple organs causing mixed 

populations of cells. Since a function of molecular clocks is to regulate metabolism, it 

would be important to explore metabolic pathways in our SCD and WT BM 

transplant mice. 

 Peripheral clocks regulate oxidative stress pathways to promote glutathione 

(GSH) synthesis and other anti-oxidative responses in Drosophila and mammalians 

(127, 128). GSH is a potent anti-oxidant that is circadian regulated. In Drosophila, 

GSH is circadian regulated in WT files, but, abolished in Per mutant flies (127). Thus 

it will be important to determine whether sickle Per1/Per2 dKO mice have abnormal 

metabolic lung profile compare to sickle BM transplanted to WT mice.  
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At the cellular level, erythrocytes, fibroblasts, immune cells, and liver cells 

express circadian patterns of anti-oxidant proteins such as peroxiredoxins, which are 

essential for combating ROS (50, 51). As part of my future studies, I will like to 

conduct single cell metabolomics by purifying macrophages from peripheral tissues 

and BM cells isolated from sickle BM transplant mice groups. I am interested to 

investigate whether elevated presence of ROS in Per1/Per2 dKO– sickle BM 

transplant mice results in unique changes in their metabolic profile from BM-derived 

cells compared to tissue macrophages.  

Lastly, heme and iron overload is a serious debilitating condition that can 

occur due to chronic transfusions in patients with severe hemolytic anemia such as 

SCD and β-thalassemia. There are two FDA-approved drugs, deferoxamine and 

deferasirox, which are iron chelators used in the clinic to treat iron overload. Since 

transplant SCD BM mice express excess iron in peripheral organs, future 

investigations could be to determine whether these pharmacologic tools can be 

beneficial for reducing iron levels in Per1/Per2 dKO sickle mice.  
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